Он уточнил, что среди инвесторов французских проектов в области ИИ будут компании из Объединенных Арабских Эмиратов, Соединенных Штатов, Канады и самой Франции.
Кроме того, Макрон подчеркнул намерение Парижа сотрудничать с Нью-Дели и Пекином для продвижения технологий искусственного интеллекта. «Мы стремимся к совместной работе с Индией», – сказал он, добавив, что Франция также намерена взаимодействовать с Китаем и Соединенными Штатами, однако не хочет зависеть ни от одной страны.
Относительно обсуждений о возможном запрете использования китайского чат-бота DeepSeek в некоторых странах, Макрон выразил мнение, что запрет технологических решений лишь на основании их происхождения является неоправданным шагом.
Новость
Видео
- Goku: генеративная модель видео на основе потоков.
- Goku+: Модель, которая позиционируется, как модель для генерации видеорекламы и обещает быть в 100 раз дешевле, чем традиционные методы создания видео-рекламы.
Аrxiv
С этим ноутбуком примерно за 2 часа можно обучить модель Qwen 0.5B на математическом наборе данных GSM8K, используя обучение с подкреплением!
Colab Demo
Проект предлагает платформу с готовыми моделями, наборами данных и инструментами для работы с робототехникой на базе PyTorch.
На данный момент доступны предварительно обученные модели, демонстрационные среды для симуляций, а также готовые скрипты для обучения и управления реальными роботами.
Также предоставляются рекомендации по ведению логов и оценке моделей, а также ссылки на исследовательские материалы и примеры кода для профилирования.
Github
Safe Superintellgence(SSI), основанная в июне 2024, еще ничего не выпускает и не зарабатывает, так как первым продуктом обещают сразу ни больше ни меньше — safe AGI.
А пока просто посмотрите на сайт компании, которая УЖЕ привлекла миллиард долларов и собирается привлечь еще. Сила имени.
ssi.inc.
@ai_machinelearning_big_data
#openai #deeplearning #opensource #ai #ml #llm #machinelearning #guide #news #chatgpt #qwen #ainews #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥64👍38❤12😁7🥱3🤔2🌚1😭1
This media is not supported in your browser
VIEW IN TELEGRAM
Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!
Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU!
✨ Как это работает?
Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова
cuml.patch.apply()
вы "патчите" установленный у вас scikit-learn прямо в памяти.Теперь, когда вы вызываете, например,
KNeighborsClassifier
или PCA
из sklearn:Ключевые преимущества:
2 строчки:import cuml.patch и cuml.patch.apply().
Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.
👇 Как использовать:
Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):
python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend
Добавьте в начало скрипта:
import cuml.patch
cuml.patch.apply()
Используйте scikit-learn как обычно!
Попробуйте и почувствуйте разницу! 😉
▪Блог-пост
▪Colab
▪Github
▪Ускоряем Pandas
@ai_machinelearning_big_data
#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍79🔥45❤10💘3😁1
Команда StepFun AI выпустила Step-Video-TI2V модель для генерации видео (до 102 кадров), производительностью SOTA.
Принимает на вход текстовые описания и изображенияъ 🖼️ + ✍️ = 🎬
На бенчмарке VBench-I2V, моделька показывает лучшие результаты по сравнению с другими современными открытыми моделями для генерации видео из изображения и текста, а также лидирует в публичном рейтинге.
Ключевые особенности:
▪ Контроль движения: Модель предлагает достойный баланс между стабильностью движения и гибкостью, позволяя управлять динамикой в кадре.
▪ Разнообразные движения камеры: Поддерживается имитация различных движений виртуальной камеры для создания более кинематографичных эффектов.
▪ Мастер аниме-стиля: Step-Video-TI2V особенно преуспевает в генерации видео в стиле аниме, открывая новые возможности для фанатов и создателей контента! ✨
▪ Поддержка разных разрешений: Модель может генерировать видео в нескольких вариантах размеров.
@ai_machinelearning_big_data
#AI #VideoGeneration #TextToVideo #ImageToVideo #GenerativeAI #MachineLearning #StepFunAI #ИИ #ГенерацияВидео #Нейросети #Аниме #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41❤11🔥5🤔2🌚1
Ключевое достижение: Метод обладает рекордно высоким (State-of-the-Art) коэффициентом сжатия данных - 75%!
BPT использует блочную индексацию и агрегацию патчей, что позволяет уменьшить длину последовательностей мэшей примерно на 75% по сравнению с исходными данными.
Это значительно повышает эффективность обработки и генерации высокодетализированных 3D-моделей.
Преимущество: Такое сжатие позволяет эффективно генерировать высокодетализированные 3D-модели, содержащие более 8000 граней (полигонов).
BPT - очень перспективный подходя для 3D-моделирования.
Он позволяет создавать детализированные и топологически точные модели с использованием компактных и эффективных представлений данных.
@ai_machinelearning_big_data
#ml #ai #machinelearning #3d
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍35🔥20❤6
Команда DeepSeek представила DeepSeek-GRM (Generalist Reward Modeling) - новую систему для моделирования вознаграждения (RM), цель которой - улучшить согласованность LLM с общими запросами (general query alignment).
DeepSeek-GRM предлагает новый масштабируемый способ построения более надежных и универсальных систем вознаграждения.
DeepSeek-GRM-27B с масштабированием во время инференса показывает SOTA (или близкие к SOTA) результаты на RM бенчмарках, будучи при этом эффективнее по параметрам, чем гигантские модели, и имея меньше проблем с систематическими ошибками.
LLM-as-a-Judge показывает схожие показатели, но с более низкой производительностью.
Это интересный вектор развития RM, переносящий часть "интеллекта" оценки на этап инференса для повышения качества моделей.
#LLM #AI #MachineLearning #RewardModeling #DeepSeek #ReinforcementLearning #NLP #OpenSource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍46🔥16❤7🤬1
SkyReels‑V2 - опенсорс генератор видео из текста, который не только соперничает с лучшими закрытыми решениями, но и предлагает уникальное преимущество — теоретически неограниченную длину генераций.
- Story Generation: полный конвейер от генерации текста до последовательного сюжета для видео.
- Image‑to‑Video
- Camera Director: управление виртуальной камерой — смена углов, зум, трекинг.
- Elements‑to‑Video: генерация отдельных объектов или эффектов, которые затем интегрируются в общий видеоряд.
На бенчмарках SkyReels V2 лидирует среди открытых моделей на VBench с 83.9%, оставляя позади Wan2.1, HunyuanVideo и OpenSora 2.0.
▪ Попробовать
▪ Github
▪ Technical Report
▪ Hugging Face
▪ ModelScope
@ai_machinelearning_big_data
#AI #TextToFilm #VideoGeneration #SkyReelsV2 #MachineLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍72🔥32❤16🤣12
Google разработала масштабируемый процесс *active learning*, который позволяет в десятки тысяч раз сократить объём размеченных данных, необходимых для тонкой настройки больших языковых моделей на сложных задачах — например, при модерации рекламного контента.
1. Стартовая модель (LLM-0) получает промпт и автоматически размечает огромный массив данных.
2. Кластеризация выявляет примеры, где модель путается (наиболее спорные и ценные для обучения).
3. Отбор данных: из этих кластеров выбирают информативные и разнообразные примеры.
4. Экспертная разметка — только для выбранных примеров.
5. Итерации: дообучение модели → новый отбор спорных примеров → разметка → снова обучение.
- Сокращение с 100 000 размеченных примеров до менее 500 при сохранении или улучшении качества.
- Улучшение метрики *Cohen’s Kappa* на 55–65 %.
- В больших продакшн-моделях — до 3–4 порядков меньше данных при сопоставимом или лучшем качестве.
Это метрика, которая показывает, насколько два "судьи" (например, эксперт и модель) согласны между собой с поправкой на случайные совпадения.
- 0.0 — нет согласия (или хуже случайного)
- 0.41–0.60 — умеренное согласие
- 0.61–0.80 — значительное
- 0.81–1.00 — почти полное согласие
В задачах с дисбалансом классов Kappa даёт более честную оценку, чем обычная точность (accuracy).
Чем лучше предыдущих методов:
- Точечная разметка: размечаются только самые информативные примеры.
- Масштабируемость: метод применим к наборам данных с сотнями миллиардов примеров.
- Экономия ресурсов: меньше времени и затрат на разметку.
- Быстрая адаптация: подходит для доменов с быстро меняющимися правилами (реклама, модерация, безопасность).
При умном отборе данных LLM можно адаптировать в тысячи раз быстрее и дешевле, чем при традиционном обучении на больших размеченных наборах.
#GoogleResearch #ActiveLearning #AI #LLM #MachineLearning #DataEfficiency
@ai_machinelearning_big_data
#GoogleResearch #ActiveLearning #AI #LLM #MachineLearning #DataEfficiency
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍108🔥23❤19⚡3🥰3
@ai_machinelearning_big_data
#AI #Multimodal #MachineLearning #MoE #VisionAI #Tencent #Hunyuan #LLM #ComputerVision #3DVision
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍44❤15🔥13🥱1
🎮 Matrix-Game 2.0 — первая опенсорс модель, которая генерирует интерактивные 3D-миры из текста в реальном времени
Неделю назад DeepMind показала Genie 3, но код не был выложен в открытый доступ.
А сегодня Skywork выложили свой генератор
Matrix-Game 2.0 миров в опенсорс 🚀
Возможности:
🟢 25 кадров/с в реальном времени
🟢 Генерирует минуты непрерывного геймплея
🟢 Полная интерактивность: движение, повороты, исследование мира
Можно использовать несколько встроенных шаблонов: город, дикая природа, TempleRun, GTA и др.
Зачем это нужно:
🟠 Создание игровых движков
🟠 Тренировка AI-агентов
🟠 Создание виртуальных персонажей
Заявленые требования: GPU с памятью не менее 24 ГБ (A100 и H100 протестированы).
Как работает:
• Обучена на 1350 часах видео геймлея
• Управление: движок реагирует на нажатия клавиш и движение мыши на каждом кадре
• Модель: 1,3 млрд параметров
• KV-Cache хранит контекст, чтобы окружение генерировалось без ограничений по времени
🟡 Huggingface Model: https://huggingface.co/Skywork/Matrix-Game-2.0
🟡 Repo: https://matrix-game-v2.github.io
@ai_machinelearning_big_data
#AI #MatrixGame #OpenSource #DeepLearning #GameDev #InteractiveAI #WorldModel #GenerativeAI #RealtimeAI #MachineLearning
Неделю назад DeepMind показала Genie 3, но код не был выложен в открытый доступ.
А сегодня Skywork выложили свой генератор
Matrix-Game 2.0 миров в опенсорс 🚀
Возможности:
Можно использовать несколько встроенных шаблонов: город, дикая природа, TempleRun, GTA и др.
Зачем это нужно:
Заявленые требования: GPU с памятью не менее 24 ГБ (A100 и H100 протестированы).
Как работает:
• Обучена на 1350 часах видео геймлея
• Управление: движок реагирует на нажатия клавиш и движение мыши на каждом кадре
• Модель: 1,3 млрд параметров
• KV-Cache хранит контекст, чтобы окружение генерировалось без ограничений по времени
@ai_machinelearning_big_data
#AI #MatrixGame #OpenSource #DeepLearning #GameDev #InteractiveAI #WorldModel #GenerativeAI #RealtimeAI #MachineLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥88👍30❤24🥱5😐4
Media is too big
VIEW IN TELEGRAM
DeepMind выпустили Perch 2.0 — компактную supervised-модель для биоакустики.
Без миллиардов параметров, без сложного self-supervised обучения — просто аккуратная модель, которая побила все бенчмарки и уже работает в полевых исследованиях.
🌱 Почему это важно
Звуки природы — это источник данных о биоразнообразии.
По аудиозаписям можно понять:
- какие животные живут в лесу,
- сколько их,
- размножаются ли они,
- не вытесняются ли они человеком.
Но расшифровка аудио — адский труд: в одном часе записи из тропиков десятки накладывающихся голосов.
Perch 2.0 — универсальный эмбеддер для звуков животных.
Берёт 5 секунд аудио → выдаёт вектор, с которым можно:
- находить похожие записи,
- кластеризовать звуки,
- обучать простой классификатор для новых видов (few-shot).
⚡ Работает без GPU и без дообучения.
🛠 Архитектура
- Основa: EfficientNet-B3 (12M параметров).
- Три головы:
1. Классификация ~15k видов.
2. Прототипная — создаёт семантические логиты для distillation.
3. Source prediction — угадывает источник записи.
- Обучение в два шага:
1. Прототипная голова учится сама.
2. Её логиты становятся soft-label’ами для основной (**self-distillation**).
📊 Результаты
- SOTA на BirdSet и BEANS (ROC-AUC, mAP).
- Отличная переносимость на морских данных (киты, дельфины), которых почти не было в тренировке.
- Всё это — без fine-tuning, только фиксированные эмбеддинги.
Главный вывод
Perch 2.0 показывает, что:
могут быть важнее, чем «бесконечные параметры» и сложные LLM.
🌍 Что это меняет
- Биологам — быстрый анализ джунглей Бразилии или рифов без написания своих моделей.
- ML-инженерам — наглядный пример, как обучать компактные сети без потери качества.
- Исследователям — напоминание: не всегда нужен GPT-4, чтобы сделать полезный инструмент.
@ai_machinelearning_big_data
#DeepMind #AI #Bioacoustics #MachineLearning #Perch #Ecology
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍84❤46🔥24❤🔥4
Что она умеет:
-
- Автоматическая пунктуация, капитализация и точные таймстампы до слова.
- Поддержка русского, французского, немецкого, испанского и многих других языков.
Чем интересна
- До 10× быстрее инференс, чем у моделей в 3 раза больше.
- Уже показывает state-of-the-art точность среди открытых моделей на Hugging Face.
- Лицензия CC-BY-4.0 — можно свободно использовать в проектах.
Под капотом:
- Архитектура: FastConformer-энкодер + Transformer-декодер (~978M параметров).
- Форматы:
.wav
и .flac
, моно 16 кГц. - Легко интегрируется через NVIDIA NeMo или прямо с Hugging Face.
Где пригодится:
Всего ~978M параметров → легче, быстрее и дешевле в использовании, чем большие модели конкурентов.
@ai_machinelearning_big_data
#AI #NVIDIA #SpeechRecognition #ASR #AST #Multilingual #MachineLearning #DeepLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍84🔥39❤15✍2
🐋 Гигантский кит приплыл на HF!
🚀 DeepSeek раскатывает Base релиз новой версии V3.1 — гибридной модели, способной совмещать рассуждения и быстрые задачи.
Следите за новостями, волна только набирает силу.
⚡ 685B параметров
📏 Контекстное окно 128k
https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Base
@ai_machinelearning_big_data
#DeepSeek #AI #LLM #V3_1 #MachineLearning
🚀 DeepSeek раскатывает Base релиз новой версии V3.1 — гибридной модели, способной совмещать рассуждения и быстрые задачи.
Следите за новостями, волна только набирает силу.
⚡ 685B параметров
📏 Контекстное окно 128k
https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Base
@ai_machinelearning_big_data
#DeepSeek #AI #LLM #V3_1 #MachineLearning
🔥96❤25👍23🐳5😨5🎉1
NASA и IBM выпустили в опенсорс Surya Heliophysics Foundational Model — крупномасштабную ИИ-модель, обученную на данных за 9 лет наблюдений за космосом спутника Solar Dynamics Observatory (SDO).
Солнечные бури влияют на нашу жизнь:
🛰️ могут вывести из строя спутники
✈️ нарушить работу навигации в самолётах
⚡ вызвать перебои с электричеством
👨🚀 создать радиационную угрозу для астронавтов
Иногда вспышки сопровождаются потоками частиц, которые повреждают электронику и опасны для здоровья.
- Обучена на 9 годах наблюдений за Солнцем
- Позволяет предсказать вспышки на солнце за 2 часа до их
- Показывает точное место на Солнце, где произойдёт вспышка
- Помогает заранее подготовиться авиации, энергетике и связи к возможным проблемам.
🚀 IBM и NASA десятилетиями работали над моделями климата и погоды на Земле. Теперь они перешли к прогнозированию «космической погоды».
▪HF: https://huggingface.co/nasa-ibm-ai4science
▪Модели: https://huggingface.co/nasa-ibm-ai4science/models
▪Датасеты: https://huggingface.co/nasa-ibm-ai4science/datasets
@ai_machinelearning_big_data
#AI4Science #Heliophysics #OpenScience #MachineLearning #NASA #IBM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥102❤21👍15🤩2🤣2