289K subscribers
3.97K photos
694 videos
17 files
4.56K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
加入频道
📌Монография "Reinforcement Learning: An Overview"

Исчерпывающий материал по обучению с подкреплением (Reinforcement Learning, RL), в котором подробно описываются различные модели среды, задачи оптимизации, исследуется определение компромисса между теорией и практической эксплуатаций RL.

Отдельно рассматриваются смежные темы: распределенное RL, иерархическое RL, обучение вне политики и VLM.

В работе представлен обзор алгоритмов RL:

🟢SARSA;
🟢Q-learning;
🟢REINFORCE;
🟢A2C;
🟢TRPO/PPO;
🟢DDPG;
🟢Soft actor-critic;
🟢MBRL.

Автор - Kevin Murphy, главный научный сотрудник и руководитель команды из 28 ресечеров и инженеров в Google Deepmind. Группа работает над генеративными моделями (диффузия и LLM), RL, робототехникой, байесовским выводом и другими темами.

Кевин опубликовал более 140 статей на рецензируемых конференциях и в журналах, а также 3 учебника по ML, опубликованных в 2012, 2022 и 2023 годах издательством MIT Press. (Книга 2012 года была удостоена премии ДеГроота как лучшая книга в области статистической науки).

🔜 Монография опубликована в открытом доступе 9 декабря 2024 года.


@ai_machinelearning_big_data

#AI #ML #Book #RL
Please open Telegram to view this post
VIEW IN TELEGRAM
👍30🔥124
🔥 Российские ученые представят рекордное количество работ на NeurIPS 2024 в Ванкувере.

Специалисты из AIRI подготовили к презентации 17 научных работ. Среди исследуемых тем — обновление крупнейшего в мире датасета для лекарственных молекул, оптимизация в машинном обучении, а также методы удешевления обучения AI-моделей.

Одна из работ, подготовленных совместно с Лабораторией искусственного интеллекта Сбера, изучает влияние эмоций на принятие решений нейросетями. По словам старшего вице-президента Сбера Андрея Белевцева, такой успех говорит о высокой конкурентоспособности отечественной науки в области AI на мировой арене.

@ai_machinelearning_big_data

#AI #LLM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍38🔥20😁65👏1
This media is not supported in your browser
VIEW IN TELEGRAM
🌟 Text-to-Speech в браузере на безе OuteTTS.

Простое приложение React + Vite для запуска OuteTTS с помощью Transformers.js и WebGPU.

Попробовать демо можно на HuggingSpace. При первом запуске модель загружается в кэш браузера, это занимает какое-то время.

▶️ Локальная установка и запуск:

# Clone the repository
git clone https://github.com/huggingface/transformers.js-examples.git

# Go to project dir
cd transformers.js-examples/text-to-speech-webgpu

# Install the dependencies via npm
npm i

# Run dev server
npm run dev

# Open your browser and go to http://localhost:5173



🟡Demo
🖥Github


@ai_machinelearning_big_data

#AI #ML #TTS #WebGPU #TransfomersJS
Please open Telegram to view this post
VIEW IN TELEGRAM
👍237🔥6
🌟 DeepSeek-V2.5-1210: файнтюн базовой DeepSeek-V2.5.

Файнтюн модели DeepSeek-V2.5 с 236 млрд. параметров с улучшенными показателями в математических вычислениях, программировании, генерации текста и рассуждении. В модели также оптимизированы функции загрузки файлов и обобщения веб-страниц.

Точность решения задач с DeepSeek-V2.5-1210 на LiveCodebench выросла с 29,2% до 34,38% относительно родительской DeepSeek-V2.5, в математических тестах MATH-500 с 74.8% до 82.8%.

DeepSeek-V2.5-1210 поддерживает function calling и использует обновленный шаблон чата для расширения возможностей модели.

⚠️ Чтобы использовать модель в инференсе с BF16 требуется 8 GPU c 80 GB VRAM каждый.


▶️Пример инференса DeepSeek-V2.5-1210 на Transformers:

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "deepseek-ai/DeepSeek-V2.5-1210"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# `max_memory` should be set based on your devices
max_memory = {i: "75GB" for i in range(8)}
# `device_map` cannot be set to `auto`
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="sequential", torch_dtype=torch.bfloat16, max_memory=max_memory, attn_implementation="eager")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

messages = [
{"role": "user", "content": "Write a piece of quicksort code in C++"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)


📌Лицензирование: MIT License.


🟡Модель


@ai_machinelearning_big_data

#AI #ML #LLM #DeepSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
👍17🔥124
✔️ Проект vLLM присоединился к экосистеме PyTorch.

vLLM, движок для запуска LLM, стал частью экосистемы PyTorch. vLLM обеспечивает высокую пропускную способность и эффективное использование памяти при работе с моделями, содержащими сотни миллиардов параметров. vLLM поддерживает аппаратные платформы NVIDIA, AMD, Google Cloud TPU, Intel и AWS. Установить vLLM теперь можно простой командой: pip install vllm.
pytorch.org

✔️ OpenAI запускает Canvas для совместной работы с ChatGPT.

Canvas предоставляет возможность совместного редактирования текстов и кода в режиме реального времени. Новая функция позволяет пользователям добавлять текст, вносить изменения и давать обратную связь ChatGPT. Интеграция с Python позволяет запускать код непосредственно в Canvas и визуализировать результаты, включая графику. OpenAI также объявила о поддержке Canvas в пользовательских GPT, что позволит расширить их функциональность и адаптировать к конкретным задачам.
openai.com

✔️ MIT разработал инструмент для отслеживания источников информации, используемых ИИ.

Исследователи из МIT создали ContextCite – инструмент, который отслеживает источники информации, применяемые ИИ при создании текста. ContextCite позволяет пользователям проверять достоверность информации, предоставляемой ИИ, выделяя фрагменты текста, на которых основан ответ.

В случае ошибки ContextCite помогает определить источник недостоверных данных и понять логику работы ИИ. Инструмент также способен выявлять «атаки отравления», когда злоумышленники пытаются исказить информацию, вводя ложные данные в источники, используемые ИИ.
news.mit.edu

✔️ DIMON: Нейросетевой оператор для решения дифференциальных уравнений в частных производных на различных геометрических областях.

Ученые из Университета Джонса Хопкинса разработали новый метод машинного обучения DIMON (Diffeomorphic Mapping Operator Learning), который способен эффективно обучаться и решать дифференциальные уравнения в частных производных (PDE) значительно быстрее, чем суперкомпьютеры.

DIMON основан на использовании диффеоморфизмов для преобразования функций, заданных на различных областях, в единую эталонную область. Это позволяет обучить нейросетевой оператор, способный аппроксимировать решение PDE на любой области из семейства диффеоморфных областей. DIMON успешно протестирован на решении уравнения Лапласа и моделировании динамики реакции-диффузии. Он был использован для прогнозирования распространения электрического сигнала в левом желудочке сердца на основе данных 1006 пациентов. DIMON продемонстрировал высокую точность, сократив время прогнозирования с нескольких часов до менее чем одной секунды.
nature.com

✔️ Reddit запускает инструмент поиска с ИИ.

Инструмент автоматически генерирует ответы на запросы пользователей и предоставляет ссылки на релевантные источники информации. Ключевой особенностью Reddit Answers является использование данных, собранных непосредственно с платформы Reddit, что позволяет находить нужную информацию без обращения к внешним поисковым системам.

В настоящее время доступ к Reddit Answers ограничен: им могут воспользоваться только пользователи из США через веб-интерфейс или приложение iOS и только на английском языке. В планах - расширить доступность сервиса для других языков и регионов. На данный момент Reddit Answers находится на стадии тестирования.
redditinc.com

✔️ Swift Ventures создает новый индекс для оценки инвестиций в ИИ.

Индекс использует систему оценки, основанную на анализе инвестиций в исследования ИИ, количество специалистов по ИИ в штате и доходы от операций, связанных с ИИ. Этот подход позволяет определить, какие компании действительно инвестируют в ИИ, а не просто используют модный термин.

Анализ отслеживаемых 90 компаний показал, что только небольшая часть компаний, упомянувших ИИ в своих отчетах, вкладывает значительные средства в развитие этой технологии.
venturebeat.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍268🔥4👏1
🌟 TGI v3: Новая архитектура ускоренного инференса LLMs.

TGI v3 — новая версия архитектуры для обработки естественного языка, разработанная Hugging Face. TGI v3 демонстрирует значительный прирост производительности, особенно при работе с длинными запросами.

Улучшения v3:

🟢оптимизированные ядра;
🟢эффективная структура кэширования префиксов;
🟢улучшенное управление вычислительными ресурсами.

Flashinfer и flashdecoding — новые ядра быстрой обработки текста. Оптимизированная структура кэширования позволяет быстро находить совпадения даже для очень длинных запросов.

TGI v3 оценивалась в реалистичных сценариях на коротких и длинные запросах. Результаты тестов показали, что TGI v3 обрабатывает в 3 раза больше токенов, чем vLLM, а скорость обработки увеличилась в 13 раз для запросов длиной 200K+ токенов.

Хотя результаты работы TGI v3 впечатляют, следует учитывать некоторые ограничения:

⚠️ Если в среде не хватает места в kv-кэше, это может привести к конфликту. Чтобы избежать этого эффекта, следует установить ограничение --max-total-tokens.

⚠️ В сценариях, где несколько реплик находятся за одним эндпоинтом рекомендуется использовать балансировку нагрузки на зависимые сеансы, чтобы заставить каждого пользователя отправлять свои запросы на одну и ту же реплику.

🔜 Полная статья с описанием TGI v3 доступна на HF.


🖥 GIthub


@ai_machinelearning_big_data

#AI #ML #LLM #HuggingFace #TGI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19🔥73
🌟 Лучшие открытые LLM на русском языке в мире

“Т-Технологии”(в состав входит Т-Банк) представили свои большие языковые модели T-Pro и обновленную T-Lite на платформе Hugging Face:

🟠32 млрд. параметров — у T-Pro;
🟢7 млрд. параметров – у T-Lite.

Им удалось обогнать все открытые модели в мире по качеству ответов на русском языке в своих категориях, в том числе проприетарные — T-Pro уступает лишь GPT4-o. Это показали разные бенчмарки, в том числе ruMMLU, Ru Arena Hard, MT Bench и AlpacaEval.

⚠️Модели создаются с использованием технологии продолженного предобучения (Continual Pretraining). Это значит, что уже обученную на больших объемах информации модель достаточно дообучить под конкретные задачи. Также модели T-Lite и T-Pro основаны на базе моделей семейства Qwen-2.5, но показывают более высокое качество на задачах русского языка, чем оригинальные модели.

@ai_machinelearning_big_data

#AI #ML #LLM #EXAONE #LG
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
34👍19🤣16🔥8🤨1
📌 Пятидневный интенсивный курс по GenAI от Google и Kaggle.

Google совместно с Kaggle представили пятидневный интенсивный курс по генеративному искусственному интеллекту, который доступен в формате самостоятельного обучения.

Курс, который проходил в прямом эфире с 11 по 15 ноября 2024 года, охватывает базовые технологии и методы генеративного ИИ. Программа включает изучение базовых моделей, инженерии промптов, векторных баз данных и эмбедингов, ИИ-агентов, специализированных моделей для конкретных областей и MLOps для GenAi.

Каждый день курса посвящен определенной теме и включает теоретические материалы, практические задания и возможность взаимодействия с экспертами Google.

Участники изучат развитие LLM, начиная с трансформеров и заканчивая техниками тонкой настройки и ускорения инференса. Познакомятся с методами инженерии промптов для оптимизации взаимодействия с LLM.

В рамках курса будут рассмотрены концепции эмбедингов и векторных баз данных, алгоритмы векторного поиска и научатся создавать ИИ-агентов, понимая их основные компоненты и итеративный процесс разработки.

Курс включает создание и применение специализированных LLM: SecLM и Med-PaLM, с комментариями разработчиков. Участники узнают, как адаптировать практики MLOps для генеративного ИИ и использовать инструменты Vertex AI для базовых моделей и приложений генеративного ИИ.

В рамках практических занятий на платформе Kaggle участники смогут применить полученные знания, создавая системы вопросов и ответов на основе извлечения информации, нейронные сети классификации и агентные системы заказа.

Курс разработан экспертами Google: Анантой Навалгарией, Марком Макдональдом, Пейдж Бейли и другими.

⚠️ Для доступа к коду курса необходимы аккаунты на Kaggle (c верификацией номера телефона), Google Ai Studio (для создания API KEY).


🟡Страница курса
🟡Сообщество в Discord


@ai_machinelearning_big_data

#AI #ML #LLM #GenAI #Course
Please open Telegram to view this post
VIEW IN TELEGRAM
👍217🔥6
🌟 BioNeMo: фреймворк разработки ИИ-моделей для дизайна лекарств.

NVIDIA BioNeMo2 Framework - это набор инструментов, библиотек и моделей для вычислительного поиска и разработки лекарственный препаратов.

Он ускоряет самые трудоемкие и дорогостоящие этапы создания и адаптации моделей биомолекулярного ИИ, предоставляя оптимизированные модели и инструменты, которые легко интегрируются в вычислительные ресурсы на базе GPU.

Фреймворк позволяет создавать, обучать и настраивать модели, его возможности охватывают различные рабочие нагрузки и терапевтические механизмы: генерация молекул, предсказание структуры белка, белок-лиганд и обучение представлениям.

Помимо кода пайплайнов, скриптов и утилит, BioNeMo2 Framework содержит:

▶️Предобученные модели:

🟢ESM-2 - предварительно обученный двунаправленный энкодер (BERT-подобный) для аминокислотных последовательностей. BioNeMo2 включает в себя чекпоинты с параметрами 650M и 3B;

🟢Geneformer - модель табличного подсчета, которая генерирует плотное представление sc-RNA клетки путем изучения паттернов коэкспрессии в отдельных клетках.


▶️Датасеты:

🟠CELLxGENE - совокупность общедоступных single-cell наборов данных, собранных в CZI (Chan Zuckerberg Initiative) общим объемом в 24 млн. клеток;


🟠UniProt - база данных кластеризованных наборов белковых последовательностей из UniProtKB, созданная на основе транслированных геномных данных.


📌Лицензирование: Apache 2.0 License.


🟡Страница проекта
🟡Документация
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Framework #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍25🔥75
✔️ Google открыла доступ к Gemini 2.0 Flash.

Gemini 2.0 Flash демонстрирует двукратное увеличение скорости по сравнению с предыдущей версией 1.5 Pro и обладает улучшенными характеристиками в обработке текста, кода, видео и пространственных данных. Модель также поддерживает новые функции: мультимодальный вывод (текст, аудио и изображения) и встроенное использование Google Search.
Разработчики могут получить доступ к Gemini 2.0 Flash через API в Google AI Studio и Vertex AI. Обновленная версия Gemini также предоставляет возможность создавать приложения с использованием потоковой передачи аудио и видео в режиме реального времени.
developers.googleblog.com

✔️ Apple разрабатывает собственный ИИ-чип.

Apple в сотрудничестве с Broadcom разрабатывает собственный серверный чип, оптимизированный для задач искусственного интеллекта. Чип под кодовым названием Baltra, планируется запустить в массовое производство к 2026 году, а для его производства Apple намерена использовать передовой техпроцесс TSMC с обозначением N3P.
theinformation.com

✔️ Microsoft запускает Copilot Vision.

Microsoft запускает предварительную версию Copilot Vision, инструмента, который позволяет пользователям взаимодействовать с веб-страницами с помощью ИИ. Copilot Vision доступен в браузере Microsoft Edge, сканирует и анализирует содержимое веб-страницы, предоставляя расширенную информацию и помогая в принятии решений.

Например, Copilot Vision может помочь спланировать посещение музея, выделив информацию о выставках и экспонатах или упростить онлайн-шопинг, подбирая товары в соответствии с заданными критериями.

Copilot Vision активируется только с разрешения пользователя, а данные сеанса удаляются после его завершения. Предварительная версия Copilot Vision доступна ограниченному числу подписчиков Copilot Pro в США и будет работать только с определенным набором веб-сайтов.
microsoft.com

✔️ Hugging Face и Entalpic представляют LeMaterial: открытую инициативу для исследований в области материаловедения.

Первым этапом проекта стал выпуск набора данных LeMat-Bulk, который объединяет, очищает и стандартизирует данные из авторитетных источников: Materials Project, Alexandria и OQMD. В результате сформирован единый формат данных, включающий 6,7 млн. записей и 7 свойств материалов.

LeMat-Bulk содержит древовидную карту элементного состава, расширяющую охват существующих наборов данных, которые фокусируются на конкретных типах материалов. LeMat-Bulk предоставляет пользователям инструменты для изучения и визуализации. В последующих версиях LeMaterial планируется добавление новых наборов данных, инструментов и приложений.
huggingface.co

✔️ Google тестирует "универсального агента" ИИ.

Google DeepMind расширяет программу тестирования Project Astra и Project Mariner, которые входят в прототип "универсального агента" ИИ.

Astra - виртуальный помощник, способный обрабатывать текст, изображения, видео и аудио в режиме реального времени и отвечать на вопросы, касающиеся этих данных. Он "запоминает" предыдущие взаимодействия и может ссылаться на них. Project Mariner - ИИ, способный управлять браузером пользователя и выполнять задачи с помощью расширения Chrome.

В настоящее время оба проекта находятся на ранней стадии разработки и доступны ограниченному числу тестировщиков. Astra интегрируется в продукты Google: Search, Lens и Maps. Пока неизвестно, когда эти системы станут доступны широкой публике.
theverge.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍22🥰84
🌟 Torchcodec: библиотека для декодирования видео в PyTorch.

PyTorch представила torchcodec – библиотеку, предназначенную для декодирования видео в тензоры PyTorch. Библиотека разработана для специалистов, работающих с моделями машинного обучения PyTorch, которым требуется обработка видеоданных. Torchcodec обеспечивает декодирование видео в тензоры PyTorch на CPU и GPU CUDA.

Библиотека рассматривает видеофайл как последовательность кадров в Python и поддерживает два метода их извлечения: на основе индекса и на основе времени презентации. Декодированные кадры представляют собой тензоры PyTorch, готовые для подачи в модели машинного обучения.

Torchcodec поддерживает все кодеки, доступные в FFmpeg и может обрабатывать видео как с постоянной, так и с переменной частотой кадров .

Подробная инструкция по установке, использованию классов библиотеки и примеры декодирования доступны в документации Torchcodec.


📌Лицензирование: BSD-3-Clause License.


🟡Статья
🟡Документация
🖥Github


@ai_machinelearning_big_data

#AI #ML #Pytorch #Torchcodec
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41🔥137🤔2🤬1
🌟 MD4: Маскированная диффузия для дискретных данных.

Маскированная (или абсорбирующая) диффузия - перспективный подход в генеративном моделировании дискретных данных, предлагающий альтернативу авторегрессионным моделям.

MD4 (Masked Discrete Diffusion for Discrete Data) - метод, разработанный в Google DeepMind предлагает упрощенный и обобщенный подход к маскированной диффузии. Структура метода позволяет обучать обобщенные модели маскированной диффузии с гибкими схемами маскировки, зависящими от состояния данных.

В основе MD4 лежит «маскирующий» процесс, превращающий исходные данные в состояние «маски» в случайный момент времени. Обращение этого процесса позволяет синтезировать новые данные, сохраняющие распределение обучающей выборки.

Математически прямой процесс описывается как марковская последовательность дискретных случайных величин, индексируемых временным параметром от 0 до 1.

MD4 продемонстрировал превосходство над диффузионными языковыми моделями по показателю перплексии на наборе данных OpenWebText и значительно обошел существующие дискретные диффузионные модели по качеству пиксельного моделирования изображений, достигая 2,75 бит на измерение для CIFAR-10 и 3,40 бит на измерение для ImageNet 64 × 64.

Эти результаты выше, чем показатели авторегрессионных моделей сопоставимого размера (GPT-2, PixelRNN, Gated PixelCNN, PixelCNN++, PixelSNAIL, Image Transformer, Sparse Transformer).

Несмотря на все преимущества метода, MD4 склонен к переобучению, что снижает его эффективность для задач с нулевой выборкой по сравнению с более простыми моделями.

Прикладная реализация MD4 опубликована в репозитории Google Deepmind, в котором представлена возможность повторить экспериментальное обучение на тексте или изображениях.

⚠️ Batch size зависит от вычислительных ресурсов. Для обучения модели MD4-S с длиной последовательности 1024, 8 GPU A100 могут поддерживать максимальный batch size=128. При запуске на TPU, 8 чипов v5litepod, batch size=32.

▶️Локальная установка и пример обучения на тексте и изображениях:

# Create & activate env
python -m venv md4_venv
source md4_venv/bin/activate

# Install required packages
pip install -r requirements_gpu.txt

# Include a path dir in the Python path
export PYTHONPATH="$PYTHONPATH:~/path/to/md4"

# Prepare openwebtext for training
mkdir data_dir
python prepare_openwebtext_data.py

# Train a MD4-S model over text data
python md4/main.py --config=md4/configs/md4/openwebtext.py --sharded=false --workdir=./expt

# Train a MD4-S model over image data via cifar10
python md4/main.py --config=md4/configs/md4/cifar10.py --sharded=false --workdir=./expt


📌Лицензирование: Apache 2.0 License.


🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Diffusion #MD4 #GoogleDeepMind
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍16🔥65