Boltz-1 - первая доступная модель с открытым исходным кодом, которая достигает точности AlphaFold3 в прогнозировании 3D-структур белков, РНК, ДНК и небольших молекул. Boltz-1 основана на архитектуре AlphaFold3, но включает ряд модификаций, повышающих точность и общую эффективность модели.
Архитектура состоит из модуля множественного выравнивания последовательностей (MSA), модуля PairFormer и диффузионной модели, работающую на двух уровнях разрешения: тяжелые атомы и токены. Токены представляют собой аминокислоты для белков, основания для РНК и ДНК, а также отдельные тяжелые атомы для других молекул.
Boltz-1 использует диффузионную модель, аналогичную AlphaFold3, но Boltz-1 использует жесткое выравнивание с помощью алгоритма Кабша после каждого шага процедуры вывода, чтобы гарантировать, что интерполированная структура более похожа на очищенную от шума выборку. Это уменьшает дисперсию потерь денойзинга и предотвращает переобучение модели.
Обучение модели проводилось на структурных данных из PDB, выпущенных до 30 сентября 2021 года, с разрешением не менее 9Å. Чтобы ускорить обучение, разработчики Boltz-1 применили алгоритм сопряжения MSA с использованием таксономической информации, унифицированный алгоритм кадрирования и алгоритм определения кармана связывания. Обучение модели заняло 68 тысяч шагов с размером пакета 128, что меньше, чем у AlphaFold3.
Оценка Boltz-1 была выполнена на датасете CASP15 и на наборе PDB, специально созданном разработчиками для тестирования.
Результаты показали, что Boltz-1 сопоставима по точности с Chai-1, закрытой репликацией AlphaFold3. Обе модели демонстрируют схожие показатели среднего LDDT и среднего TM-score.
Boltz-1 продемонстрировала преимущество в предсказании взаимодействия белок-лиганд на наборе данных CASP15.
Прикладная реализация инференса, доступная в репозитории на Github, может принимать на вход форматы:
Подробные инструкции для процесса прогнозирования и дообучения опубликованы в репозитории с кодом.
# Install boltz with PyPI
pip install boltz
# run inference
boltz predict input_path
@ai_machinelearning_big_data
#AI #ML #Diffusion #3D #Biomolecular
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍27🔥11❤10
Apple выпустила невероятно быстрые модели Core ML и приложение для iOS, позволяющее запускать их на iPhone! ⚡
Эти модели можно подключить к демо приложению, представленному в официальном репозитории MobileCLIP.
> S0 соответствует ViT-B/ 16 от OpenAI, но в 4,8 раза быстрее и в 2,8 раза меньше размером.
> S2 превосходит ViT-B/16 от SigLIP в 2,3 раза, при этом в 2,1 раза меньше по размеру, при этом используется для обучения в 3 раза меньше данных.
> MobileCLIP-B(LT) достигает 77,2%-ную точность обработки изображений, превосходя DFN, SigLIP и даже ViT-L/14@336 от OpenAI
conda create -n clipenv python=3.10
conda activate clipenv
pip install -e .
Пример использования:
Python
import torch
from PIL import Image
import mobileclip
model, _, preprocess = mobileclip.create_model_and_transforms('mobileclip_s0', pretrained='/path/to/mobileclip_s0.pt')
tokenizer = mobileclip.get_tokenizer('mobileclip_s0')
image = preprocess(Image.open("docs/fig_accuracy_latency.png").convert('RGB')).unsqueeze(0)
text = tokenizer(["a diagram", "a dog", "a cat"])
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)
▪HF
▪Github
▪Результаты модели
@ai_machinelearning_big_data
#apple #coreml #mobile
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍27🔥11❤6
RLtools - библиотека глубокого обучения с подкреплением (Deep Reinforcement Learning, DRL) с высокой скоростью работы для разработки и исследования алгоритмов DL.
RLtools написана на C++ и позволяет проводить обучение и вывод моделей DRL на РС, мобильных устройствах и embedded-системах. В экспериментальном тестировании, библиотека обучила алгоритм RL непосредственно на микроконтроллере.
Библиотека поддерживает алгоритмы DRL: TD3, PPO, Multi-Agent PPO и SAC и предлагает набор примеров, демонстрирующих использование этих алгоритмов для решения задач управления на примерах управления маятником, гоночным автомобилем и роботом-муравьем MuJoCo.
Код реализации алгоритмов:
Благодаря оптимизации и использования аппаратного ускорения RLtools в 76 раз быстрее других библиотек. Например, на MacBook Pro с M1 RLtools может обучить модель SAC (управление маятником) за 4 секунды.
Библиотеку можно использовать на Linux, macOS, Windows, iOS, Teensy, Crazyflie, ESP32 и PX4.
RLtools предоставляет Python API, с которым можно использовать библиотеку из Python-кода. API RLtools совместим с библиотекой симуляции сред Gym.
Проекты, использующие RLtools:
# Clone and checkout
git clone https://github.com/rl-tools/example
cd example
git submodule update --init external/rl_tools
# Build and run
mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
cmake --build .
./my_pendulum
@ai_machinelearning_big_data
#AI #ML #DL #RTools #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍25🔥16❤6🤔1
Anthropic разработала новый открытый стандарт Model Context Protocol (MCP) для подключения ИИ-ассистентов к системам хранения данных. MCP позволяет моделям ИИ, независимо от разработчика, получать данные из различных источников, включая бизнес-инструменты, репозитории контента и среды разработки приложений. Это позволит моделям генерировать более качественные и релевантные ответы на запросы пользователей.
Anthropic утверждает, что MCP решает проблему разрозненности данных, предоставляя разработчикам протокол для создания двусторонних соединений между источниками данных и ИИ-приложениями. MCP уже интегрирован компаниями Block и Apollo и платформами Replit, Codeium и Sourcegraph.
techcrunch.com
Согласно исследованию Google Workspace и The Harris Poll, 82% представителей Gen Z уже используют инструменты ИИ в своей работе. Практически все опрошенные (98%) ожидают, что ИИ окажет влияние на их отрасль или рабочее место в течение следующих 5 лет. Более 50% пользователей ИИ регулярно делятся своим опытом и знаниями с коллегами, а 75% рекомендуют инструменты генеративного ИИ своим коллегам.
Z-поколение использует ИИ для написания электронных писем, преодоления языковых барьеров и повышения эффективности в коммуникациях. 88% респондентов считают, что ИИ может помочь им начать работу над сложной задачей, а 87% полагают, что ИИ сделает их более уверенными в онлайн-встречах.
googlecloudpresscorner.com
Fugatto — это новая генеративная модель, которая позволяет создавать, изменять и комбинировать любые звуки, музыку и голоса с помощью текстовых промптов и аудиофайлов.
Модель мультиязычна, основана на Transformers и использует 2,5 млрд. параметров. Fugatto обладает уникальной способностью сочетать различные инструкции и интерполировать между ними, предоставляя тонкий контроль над генерируемым звуком. Модель может изменять акценты и эмоции в голосе, создавать новые звуки, которых никогда не было, и даже заставлять музыкальные инструменты издавать нехарактерные для них звуки. Демо видео, техотчет.
blogs.nvidia.com
iRacing объединилась с Microsoft Research для разработки продвинутых моделей ИИ - Large Action Models (LAM). Цель сотрудничества - улучшить ИИ-пилотов, создать системы коучинга на базе ИИ и внедрить другие функции с использованием ИИ.
LAM будут обучаться на основе данных iRacing, чтобы предоставлять гонщикам обратную связь в режиме реального времени, улучшать качество игры и помогать им совершенствовать свои навыки. iRacing и Microsoft Research планируют опубликовать результаты своих исследований, чтобы разработчики могли внедрять технологии в свои продукты. В проекте также участвует бывший гонщик INDYCAR Ориоль Сервиа в качестве эксперта.
iracing.com
DynaSaur - это платформа агентов LLM, разработанная совместно Университетом Мэриленда и Adobe, которая позволяет агентам динамически создавать и компоновать действия в режиме реального времени.
В отличие от традиционных LLM-агентов, которые руководствуются предопределенными наборами действий, DynaSaur генерирует, выполнет и совершенствует новые функции Python, когда существующие функции оказываются недостаточными. Агент ведет растущую библиотеку повторно используемых функций, наращивая способность реагировать на различные сценарии.
В тестах на платформе GAIA DynaSaur превзошел базовые показатели, достигнув средней точности 38,21% с использованием GPT-4. Кода пока нет.
arxiv.org
Please open Telegram to view this post
VIEW IN TELEGRAM
👍34🤔5❤4🔥3
Хороших книг по обучению с подкреплением (Reinforcement Learning, RL) уже выпущено достаточно, однако есть пробел между продвинутыми учебниками, в которых основное внимание уделяется одному или нескольким аспектам, и более общими книгами, в которых предпочтение отдается удобочитаемости, а не сложности.
Авторы книги, люди с опытом работы в CS и инжиниринга, подают тему RL в строгом и академическом стиле. Книга основана на конспектах лекций для углубленного курса бакалавриата, который преподается авторами в Тель-Авивском университете.
К этой книге дополнительно идет брошюра с упражнениями и экзаменационными вопросами, которые помогут освоить материал книги на практике. Эти упражнения разрабатывались на протяжении нескольких лет.
Математическая модель книги - Марковский процесс принятия решений (Markov Decision Process, MDP). Основное внимание уделяется: последовательному принятию решений, выбору действий, долгосрочному эффекту от этих действий и разница между немедленным вознаграждением и долгосрочной выгодой.
Тематически книга состоит из двух частей – "Планирование" и "Обучение".
@ai_machinelearning_big_data
#AI #ML #RL #MDP #Book
Please open Telegram to view this post
VIEW IN TELEGRAM
❤25👍15🔥4
SmolTalk - это синтетический датасет, разработанный HuggingFace для обучения SmolTalk: новый синтетический набор данных для обучения больших языковых моделей LLM с учителем. Он состоит из 2 млн. строк и был использован для создания семейства моделей SmolLM2-Instruct. SmolTalk включает в себя как новые, так и существующие наборы данных.
Новые наборы данных:
Существующие общедоступные наборы данных:
SmolTalk сравнили недавно выпущенным набором данных Orca AgentInstruct 1M, обучив SmolLM2 на обоих наборах данных с использованием одинаковой конфигурации обучения.
Результаты показали, что SmolTalk показал значительные улучшения в производительности модели, особенно в задачах математики, программирования и следованию системным промптам. Наблюдались также значительные улучшения в масштабе 7B при обучении Mistral-7B на SmolTalk, особенно по показателям IFEval, BBH, GS8Mk и MATH.
from datasets import load_dataset
ds = load_dataset("HuggingFaceTB/smoltalk", "all", split="train")
# to load the train split of a specific subset such as smol-magpie-ultra, you can do
ds = load_dataset("HuggingFaceTB/smoltalk", "smol-magpie-ultra", split="train")
@ai_machinelearning_big_data
#AI #ML #LLM #HuggingFace #Dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍23❤7🔥4