ИИ помог найти природные аналоги лекарств против рака и старения
Ученые британского Исследовательского фонда биогеронтологии, компаний Insilico Medicine и Life Extension при помощи методов глубокого обучения нашли натуральные миметики препаратов метформин и рапамицин, препятствующих старению и развитию рака.
Согласно исследованиям, и метформин, лекарство против диабета 2-го типа, и иммунодепрессант рапамицин обладают значительным эффектом при лечении рака и старческих заболеваний, однако, оба они оказывают значительные побочные эффекты и продаются только по рецепту, что осложняет их использование в качестве препаратов, продлевающих жизнь.
Обратившись к помощи нейронной сети, группа ученых проанализировала безопасность и генетическую схожесть свыше 800 натуральных веществ, которые могли бы повторить действие этих препаратов, но были бы лишены побочных эффектов.
В результате было выявлено множество новых кандидатов на миметики метформина и рапамицина, о которых ранее не было известно.
Важность этого исследования в том, что натуральные препараты не регулируются Управлением по санитарному контролю и другими ведомствами США и могут в будущем появиться на полках аптек в свободной продаже как пищевые добавки, замедляющие механизмы старения на молекулярном и клеточном уровне.
Источник: hightech.fm #ML #DataMining #deeplearning #neuralnets #neuralnetworks #neuralnetworks #ArtificialIntelligence #MachineLearning #DigitalTransformation #tech #ML #python
Ученые британского Исследовательского фонда биогеронтологии, компаний Insilico Medicine и Life Extension при помощи методов глубокого обучения нашли натуральные миметики препаратов метформин и рапамицин, препятствующих старению и развитию рака.
Согласно исследованиям, и метформин, лекарство против диабета 2-го типа, и иммунодепрессант рапамицин обладают значительным эффектом при лечении рака и старческих заболеваний, однако, оба они оказывают значительные побочные эффекты и продаются только по рецепту, что осложняет их использование в качестве препаратов, продлевающих жизнь.
Обратившись к помощи нейронной сети, группа ученых проанализировала безопасность и генетическую схожесть свыше 800 натуральных веществ, которые могли бы повторить действие этих препаратов, но были бы лишены побочных эффектов.
В результате было выявлено множество новых кандидатов на миметики метформина и рапамицина, о которых ранее не было известно.
Важность этого исследования в том, что натуральные препараты не регулируются Управлением по санитарному контролю и другими ведомствами США и могут в будущем появиться на полках аптек в свободной продаже как пищевые добавки, замедляющие механизмы старения на молекулярном и клеточном уровне.
Источник: hightech.fm #ML #DataMining #deeplearning #neuralnets #neuralnetworks #neuralnetworks #ArtificialIntelligence #MachineLearning #DigitalTransformation #tech #ML #python
Автомобили Honda получат китайский искусственный интеллект
Компания Honda объявила о партнёрстве с китайским стартапом SenseTime, который разработает для автомобилей японской марки искусственный интеллект, сообщает Tech Crunch.
Соглашение между фирмами рассчитано на пять лет и включает в себя разработку методик распознавания объектов вокруг беспилотных машин, а также создание алгоритмов по поведению автопилота в различных дорожных ситуациях.
Напомним, ранее сообщалось, что Honda в 2025 году намерена представить свой беспилотный автомобиль уровня Level 4 (автопилот роботизирован настолько, что все делает сам, но в автомобиле сохраняются основные органы управления автомобиля человеком). В 2020 году на рынок должна выйти Honda с технологиями автономного вождения уровня Level 3 (система контролирует езду по автомагистралям, но на дорогах с непредсказуемым движением водителю придется взять управление на себя).
Источник: www.kommersant.ru #ML #DataMining #deeplearning #neuralnets #neuralnetworks #neuralnetworks #ArtificialIntelligence #MachineLearning #DigitalTransformation #tech #ML #python
Компания Honda объявила о партнёрстве с китайским стартапом SenseTime, который разработает для автомобилей японской марки искусственный интеллект, сообщает Tech Crunch.
Соглашение между фирмами рассчитано на пять лет и включает в себя разработку методик распознавания объектов вокруг беспилотных машин, а также создание алгоритмов по поведению автопилота в различных дорожных ситуациях.
Напомним, ранее сообщалось, что Honda в 2025 году намерена представить свой беспилотный автомобиль уровня Level 4 (автопилот роботизирован настолько, что все делает сам, но в автомобиле сохраняются основные органы управления автомобиля человеком). В 2020 году на рынок должна выйти Honda с технологиями автономного вождения уровня Level 3 (система контролирует езду по автомагистралям, но на дорогах с непредсказуемым движением водителю придется взять управление на себя).
Источник: www.kommersant.ru #ML #DataMining #deeplearning #neuralnets #neuralnetworks #neuralnetworks #ArtificialIntelligence #MachineLearning #DigitalTransformation #tech #ML #python
How to Demonstrate Your Basic Skills with #DeepLearning
https://machinelearningmastery.com/how-to-demonstrate-basic-deep-learning-competence/
https://machinelearningmastery.com/how-to-demonstrate-basic-deep-learning-competence/
MachineLearningMastery.com
How to Demonstrate Your Basic Skills with Deep Learning - MachineLearningMastery.com
Skills in deep learning are in great demand, although these skills can be challenging to identify and to demonstrate.
Explaining that you are familiar with a technique or type of problem is very different to being able to use it effectively with open source…
Explaining that you are familiar with a technique or type of problem is very different to being able to use it effectively with open source…
GraphRAG использует графы знаний для улучшения ответов на запросы. Во время запроса система обращается к графу знаний и использует резюме сообществ и связи между сущностями для формирования контекста, который помогает LLM дать более точный ответ, чем традиционные методы, основанные на поиске по векторным сходствам.
Архитектура GraphRAG состоит из ключевых компонентов:
Indexer : разделяет корпус данных на мелкие текстовые блоки (TextUnits), извлекает из них сущности, связи и ключевые утверждения.
Clustering : группирует данные в иерархическую структуру с использованием метода Лейдена, создавая граф знаний.
Community Summarization : генерирует обобщенные описания для каждой группы данных, что помогает в понимании контекста и смыслового связывания всей информации.
Knowledge Graph : структура, объединяющая сущности и их связи, созданная на основе данных.
GraphRAG значительно улучшает работу моделей языка с частными данными, позволяя им более точно и полно отвечать на сложные вопросы, требующие синтеза информации из разных источников.
⚠️ Рекомендации и предупреждения:
- Эффективность индексации зависит от правильной идентификации понятий
- Индексация может быть дорогостоящей, рекомендуется создание тестового набора данных
- Система предназначена для опытных пользователей в предметной области
- Необходим анализ ответов человеком для получения достоверной информации
- Методология наиболее эффективна на текстовых данных с общей темой и множеством сущностей
📄 Документация:
🟡Страница проекта
🟡Arxiv
@ai_machinelearning_big_data
#LLM #GraphRAG #ML #RAG #NLP #Deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍28❤12🔥6😁1
Свежий Бесплатный курс от freeCodeCamp по программированию CUDA.
Этот 12-ти часовой видео курс, с которым вы научитесь программировать с помощью Nvidia CUDA и использовать графические процессоры для высокопроизводительных вычислений и Deep learning.
Содержание:
▪Video: https://www.youtube.com/watch?v=86FAWCzIe_4
▪Code: https://github.com/Infatoshi/cuda-course
▪Github https://github.com/Infatoshi/mnist-cuda
▪Nvidia CUDA in 100 Seconds: https://youtu.be/pPStdjuYzSI?si=WIUc--IpgN-Qi2AP
#cuda #deeplearning #cpp #c #bigdata #courses #бесплатныйкурс
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42🔥23❤5🫡4👏2
🥥 Training Large Language Models to Reason in a Continuous Latent Space
Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).
Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.
Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем
При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.
В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами
Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.
На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.
Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.
Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.
Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов
▪Github
▪Paper
@ai_machinelearning_big_data
#deeplearning #nlp #reasoning #llm #ml
Только что был выпущен код для нового подхода в обучении LLM ризонингу - "Coconut"(Chain of Continuous Thought).
Coconut позволяет LLM рассуждать более эффективно и результативно, особенно при комплексных задачах планирования.
Основная идея алгоритма - это улучшения рассуждений моделей с использованием латентного пространства, вместо выходных лексем
При таком подходе - цепочка мыслей генерирует не в виде текстовых токенов, а в виде эмбеддингов, а затем циклично подаются обратно в LLM.
В «Coconut» у LLM есть два режима. Языковой режим работает как обычная языковая модель, генерируя текст и латентный режим, который использует скрытые состояния в качестве следующего входного сигнала, обозначенного специальными токенами
<bot> и <eot>.
Скрытые состояния Coconut работают как дерево поиска, а не как линейная цепочка рассуждений, что позволяет модели исследовать несколько потенциальных путей одновременно.
На каждом шаге модель отдает приоритет перспективным узлам, отсекая менее релевантные.
Это помогает эффективнее справляться с задачами планирования и логики, по сравнению с традиционным методом работы CoT.
Как это работает:
1️⃣ Сначала модели подается промпт, за которым следует специальный токен <bot>, чтобы инициировать скрытое рассуждение.
2️⃣ Последнее скрытое состояние LLM после обработки <bot> используется в качестве первой "непрерывной мысли"
3️⃣ Непрерывная мысль подается обратно в модель как новый вход, генерируя новое скрытое состояние (новую мысль). Это повторяется в течение K итераций → цепочка непрерывных мыслей.
4️⃣ Далее добавляется маркер <eot> после последней непрерывной мысли, чтобы завершить скрытое рассуждение.
5️⃣ Последняя непрерывная мысль и <eot> затем используются для генерации ответа.
Такой подход, разумеется, требует большого количества ресурсов при обучении модели.
Плюсы такого подхода:
🏅 Превосходит CoT в задачах, где требуется планирования и сложные рассуждения, таких как ProntoQA и ProsQA
📉 Генерирует значительно меньше лексем во время размышлений по сравнению с CoT
🔀 Может выполнять поиск с широким охватом (BFS), кодируя одновременно несколько альтернативных следующих шагов
git clone [email protected]:facebookresearch/coconut.git
cd coconut
▪Github
▪Paper
@ai_machinelearning_big_data
#deeplearning #nlp #reasoning #llm #ml
🔥49👍21❤14👾2
Operator — это ИИ-агент, который умеет работать с браузером, заказывать продукты, бронировать билеты и столики в ресторанах искать данные и тп.
Вам нужно просто описать свою задачу, а затем наблюдать в реальном времени, как оператор выполняет её за вас.
Доступ пользователям Pro уже открыт, для остальных обещают в ближайшем времени:
▪operator
В преддверии релиза OpenAI Operator разработчики начали собирать полезные ресурсы, связанные с Operator и другими подобными решениями для автоматизации задач:
▪Github
Imagen 3 дебютирует на первом месте, обойдя Recraft-v3 с впечатляющим отрывом в +70 очков!
Imagen 3 доступен на сайте .
Это тщательно собранный датасет с 3 000 вопросов, разработанный при участии сотен профильных экспертов, чтобы отразить границы человеческих знаний. Лучше всех справляется с ним DeepSeek R1 от, достигая 9.4%, у o1 отставание с 9.1%.
▪Dataset
⭐️ Можем ли мы генерировать изображения с помощью цепочки мыслей CoT?
Давайте проверим и улучшим генерацию изображений шаг за шагом.
Авторегрессионная генерация изображений + масштабирование выводов приводят к существенному улучшению генерации изображений на нескольких бенчмарках.
▪Github ▪Статья ▪HF
Крутейший генератор видео уже на подходе 😁 Движение в реальном времени стало намного лучше!
Здесь, можно подать заявку на ранний доступ:
▪Доступ
▪Новость
Новая функция API, которая позволяет Claude обосновывать свои ответы на предоставленных вами источниках.
Еще Claude может процитировать конкретные предложения и отрывки, которые лежат в основе каждого ответа.
▪Новость
@ai_machinelearning_big_data
#news #ai #ml #machinelearning #deeplearning #openai #pika #chatgpt #Imagen #cot #Anthropic #Claude
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥35👍28❤11🤣2👾1
Команда API Яндекс Карт поделилась тем, как модернизировала Геокодер. Это инструмент, который способен найти точную локацию по запросу "Мяснитская 8" или вообще "Келес ауданы Сыртав 2".
Инженеры построили весь Геокодер с помощью deep learning, который:
- Работает даже с опечатками и народными названиями
- Понимает адреса на разных языках
- Запускается в новой стране за пару недель
- Использует под капотом контрастивное обучение, active learning, аугментацию и LLM-генерацию
- Показывает результат на 14% точнее предыдущей версии
По заверениям разработчиков, чтобы поддерживать такой Геокодер, достаточно всего пять ML-инженеров.
▪️Статья
@ai_machinelearning_big_data
#ai #ml #machinelearning #deeplearning
Please open Telegram to view this post
VIEW IN TELEGRAM
❤41👍27🔥9🤬2🤣1
Он уточнил, что среди инвесторов французских проектов в области ИИ будут компании из Объединенных Арабских Эмиратов, Соединенных Штатов, Канады и самой Франции.
Кроме того, Макрон подчеркнул намерение Парижа сотрудничать с Нью-Дели и Пекином для продвижения технологий искусственного интеллекта. «Мы стремимся к совместной работе с Индией», – сказал он, добавив, что Франция также намерена взаимодействовать с Китаем и Соединенными Штатами, однако не хочет зависеть ни от одной страны.
Относительно обсуждений о возможном запрете использования китайского чат-бота DeepSeek в некоторых странах, Макрон выразил мнение, что запрет технологических решений лишь на основании их происхождения является неоправданным шагом.
Новость
Видео
- Goku: генеративная модель видео на основе потоков.
- Goku+: Модель, которая позиционируется, как модель для генерации видеорекламы и обещает быть в 100 раз дешевле, чем традиционные методы создания видео-рекламы.
Аrxiv
С этим ноутбуком примерно за 2 часа можно обучить модель Qwen 0.5B на математическом наборе данных GSM8K, используя обучение с подкреплением!
Colab Demo
Проект предлагает платформу с готовыми моделями, наборами данных и инструментами для работы с робототехникой на базе PyTorch.
На данный момент доступны предварительно обученные модели, демонстрационные среды для симуляций, а также готовые скрипты для обучения и управления реальными роботами.
Также предоставляются рекомендации по ведению логов и оценке моделей, а также ссылки на исследовательские материалы и примеры кода для профилирования.
Github
Safe Superintellgence(SSI), основанная в июне 2024, еще ничего не выпускает и не зарабатывает, так как первым продуктом обещают сразу ни больше ни меньше — safe AGI.
А пока просто посмотрите на сайт компании, которая УЖЕ привлекла миллиард долларов и собирается привлечь еще. Сила имени.
ssi.inc.
@ai_machinelearning_big_data
#openai #deeplearning #opensource #ai #ml #llm #machinelearning #guide #news #chatgpt #qwen #ainews #news
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥64👍38❤12😁7🥱3🤔2🌚1😭1
Он позволяет существенно снизить потребление памяти и ускорить вычисления по сравнению с классическим полносвязным вниманием.
Одним из главных преимуществ данного решения является его высокая эффективность при обработке длинных последовательностей.
За счёт вычисления внимания только по выбранным элементам (а не по всем парам токенов) удаётся уменьшить сложность алгоритма.
Кроме того, инструмент интегрируется непосредственно с PyTorch и использует нативные CUDA-ядра, что позволяет достичь оптимальной производительности на GPU.
Репозитория поможет в экспериментах с архитектурами, где внимание применяется к длинным последовательностям – будь то тексты, временные ряды или изображения – и обеспечивает возможность более эффективного использования вычислительных ресурсов.
native-sparse-attention-pytorch даёт существенные преимущества в снижении затрат памяти и ускорении вычислений, что делает его ценным инструментом для глубокого обучения.
$ pip install native-sparse-attention-pytorch
▪ Github
@ai_machinelearning_big_data
#deeplearning #artificialintelligence #attention #sparseattention #ml #ai
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41🔥9❤3🥰2👏2
🚀 6 День недели опенсорса: DeepSeek-V3/R1 Inference System!
DeepSeek выкатил подробный обзор своего инференса для моделей DeepSeek-V3/R1 – с акцентом на архитектурные инновации и невероятную экономическую эффективность.
DeepSeq R1 ежедневно приносит более $560 000, причем затраты на GPU составляют всего $87 000. Что озночает рентабельность в 545 %.
При таких расчетах теоретическая годовая выручка могла бы превысить $200 млн.
Компания также отметила, что затраты на обучение моделей составили менее $6 млн. Для сравнения, американские конкуренты, такие как OpenAI, инвестируют миллиарды долларов в обучение ИИ с использованием чипов NVIDIA H100. DeepSeek использует менее мощные NVIDIA H800, но это не мешает её моделям успешно конкурировать на глобальном рынке.
Данные за 24 часа:
– Входные токены: 608 млрд (с 56.3% cache hit rate)
– Выходные токены: 168 млрд при скорости 20–22 токена/с
Разительный контраст с американскими конкурентами, работающими в убыток.
Такой уровень доходности достигается за счёт оптимизированного распределения вычислений и гибкой архитектуры.
🌟 В DeepSeek-V3/R1 используется Cross-node Expert Parallelism (EP) — метод, при котором модель делится между GPU-узлами, а каждая видеокарта обрабатывает лишь небольшую часть модели. Эксперты распределяются между узлами кластера, что снижает нагрузку на память GPU, увеличивает размер батча и позволяет равномерно загружать видеокарты, избегая простоев. Это ускоряет вычисления и минимизирует задержки.
🌟 Для обработки данных DeepSeek-V3/R1 использует двухфазную стратегию инференса.
1) Prefilling фаза — здесь bспользуется EP32, где каждый GPU получает 9 направляемых экспертов и 1 общего эксперта, что позволяет минимизировать расходы на обработку данных.
2) Для Decoding используется EP144, перераспределяющий нагрузку так, что каждый GPU управляет 2 направляемыми экспертами и 1 общим экспертом. Такая стратегия помогает достичь высокой производительности без потери качества ответа.
– ~73.7k токенов/с для prefilling
– ~14.8k токенов/с для декодинга на одном узле H800
Данные за 24 часа:
– Входные токены: 608 млрд (с 56.3% cache hit rate)
– Выходные токены: 168 млрд при скорости 20–22 токена/с
🔗 Подробнее: *клик*
@ai_machinelearning_big_data
#AI #DeepLearning #DeepSeek #ml #opensource
DeepSeek выкатил подробный обзор своего инференса для моделей DeepSeek-V3/R1 – с акцентом на архитектурные инновации и невероятную экономическую эффективность.
DeepSeq R1 ежедневно приносит более $560 000, причем затраты на GPU составляют всего $87 000. Что озночает рентабельность в 545 %.
При таких расчетах теоретическая годовая выручка могла бы превысить $200 млн.
Компания также отметила, что затраты на обучение моделей составили менее $6 млн. Для сравнения, американские конкуренты, такие как OpenAI, инвестируют миллиарды долларов в обучение ИИ с использованием чипов NVIDIA H100. DeepSeek использует менее мощные NVIDIA H800, но это не мешает её моделям успешно конкурировать на глобальном рынке.
Данные за 24 часа:
– Входные токены: 608 млрд (с 56.3% cache hit rate)
– Выходные токены: 168 млрд при скорости 20–22 токена/с
Разительный контраст с американскими конкурентами, работающими в убыток.
Такой уровень доходности достигается за счёт оптимизированного распределения вычислений и гибкой архитектуры.
1) Prefilling фаза — здесь bспользуется EP32, где каждый GPU получает 9 направляемых экспертов и 1 общего эксперта, что позволяет минимизировать расходы на обработку данных.
2) Для Decoding используется EP144, перераспределяющий нагрузку так, что каждый GPU управляет 2 направляемыми экспертами и 1 общим экспертом. Такая стратегия помогает достичь высокой производительности без потери качества ответа.
– ~73.7k токенов/с для prefilling
– ~14.8k токенов/с для декодинга на одном узле H800
Данные за 24 часа:
– Входные токены: 608 млрд (с 56.3% cache hit rate)
– Выходные токены: 168 млрд при скорости 20–22 токена/с
@ai_machinelearning_big_data
#AI #DeepLearning #DeepSeek #ml #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤32👍22🔥10👏1
🎮 Matrix-Game 2.0 — первая опенсорс модель, которая генерирует интерактивные 3D-миры из текста в реальном времени
Неделю назад DeepMind показала Genie 3, но код не был выложен в открытый доступ.
А сегодня Skywork выложили свой генератор
Matrix-Game 2.0 миров в опенсорс 🚀
Возможности:
🟢 25 кадров/с в реальном времени
🟢 Генерирует минуты непрерывного геймплея
🟢 Полная интерактивность: движение, повороты, исследование мира
Можно использовать несколько встроенных шаблонов: город, дикая природа, TempleRun, GTA и др.
Зачем это нужно:
🟠 Создание игровых движков
🟠 Тренировка AI-агентов
🟠 Создание виртуальных персонажей
Заявленые требования: GPU с памятью не менее 24 ГБ (A100 и H100 протестированы).
Как работает:
• Обучена на 1350 часах видео геймлея
• Управление: движок реагирует на нажатия клавиш и движение мыши на каждом кадре
• Модель: 1,3 млрд параметров
• KV-Cache хранит контекст, чтобы окружение генерировалось без ограничений по времени
🟡 Huggingface Model: https://huggingface.co/Skywork/Matrix-Game-2.0
🟡 Repo: https://matrix-game-v2.github.io
@ai_machinelearning_big_data
#AI #MatrixGame #OpenSource #DeepLearning #GameDev #InteractiveAI #WorldModel #GenerativeAI #RealtimeAI #MachineLearning
Неделю назад DeepMind показала Genie 3, но код не был выложен в открытый доступ.
А сегодня Skywork выложили свой генератор
Matrix-Game 2.0 миров в опенсорс 🚀
Возможности:
Можно использовать несколько встроенных шаблонов: город, дикая природа, TempleRun, GTA и др.
Зачем это нужно:
Заявленые требования: GPU с памятью не менее 24 ГБ (A100 и H100 протестированы).
Как работает:
• Обучена на 1350 часах видео геймлея
• Управление: движок реагирует на нажатия клавиш и движение мыши на каждом кадре
• Модель: 1,3 млрд параметров
• KV-Cache хранит контекст, чтобы окружение генерировалось без ограничений по времени
@ai_machinelearning_big_data
#AI #MatrixGame #OpenSource #DeepLearning #GameDev #InteractiveAI #WorldModel #GenerativeAI #RealtimeAI #MachineLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥88👍30❤24🥱5😐4
Что она умеет:
-
- Автоматическая пунктуация, капитализация и точные таймстампы до слова.
- Поддержка русского, французского, немецкого, испанского и многих других языков.
Чем интересна
- До 10× быстрее инференс, чем у моделей в 3 раза больше.
- Уже показывает state-of-the-art точность среди открытых моделей на Hugging Face.
- Лицензия CC-BY-4.0 — можно свободно использовать в проектах.
Под капотом:
- Архитектура: FastConformer-энкодер + Transformer-декодер (~978M параметров).
- Форматы:
.wav
и .flac
, моно 16 кГц. - Легко интегрируется через NVIDIA NeMo или прямо с Hugging Face.
Где пригодится:
Всего ~978M параметров → легче, быстрее и дешевле в использовании, чем большие модели конкурентов.
@ai_machinelearning_big_data
#AI #NVIDIA #SpeechRecognition #ASR #AST #Multilingual #MachineLearning #DeepLearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍85🔥39❤15✍2