299K subscribers
3.99K photos
701 videos
17 files
4.57K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
加入频道
This media is not supported in your browser
VIEW IN TELEGRAM
🎙 MetaVoice-1B: 1.2B parameter base model trained on 100K hours of speech for #TTS (text-to-speech)

> Новейшая модель высококачественного клонирования голоса .
> 1.2B параметрическая модель.
> Обучена на 100 тысячах часов данных.
> Синтез коротких и длинных разговоров.
> Генерация эмоциональной речи.
> Лицензия Apache 2.0. 🔥

Простая, но надежная архитектура:
> Encodec (Multi-Band Diffusion) и GPT + Encoder Transformer LM.
> DeepFilterNet для очистки от артефактов MBD.

🌐page: https://themetavoice.xyz
🧬code: https://github.com/metavoiceio/metavoice-src
🧪demo: https://ttsdemo.themetavoice.xyz
📦model: https://huggingface.co/metavoiceio/metavoice-1B-v0.1

ai_machinelearning_big_data
🔥28👍105
🌟Parler-TTS: качественный синтез речи по тексту на английском языке.

Parler-TTS - это модели текст-в-речь (TTS), способные генерировать качественную, естественно звучащую речь в заданном стиле (пол, тон, тип речи и т. д.).
Все датасеты обучения, предварительная обработка, код обучения и веса выпускаются публично, что даст возможность сообществу строить на нашей работе и разрабатывать свои собственные модифицированные модели TTS. Обе модели обучались на 45 тысячах часов англоязычных аудиокниг.

Parler-TTS - это авторегрессионная модель, основанная на трансформерах, которая генерирует аудиотокены в причинно-следственном порядке. Код для инференса Parler-TTS оптимизирован для быстрой генерации благодаря совместимости с SDPA и Flash Attention 2.

Архитектура Parler-TTS состоит из трех частей: текстовый кодировщик (Flan-T5), декодер и аудиокодек DAC. Текстовый кодировщик преобразует текст в скрытые состояния, декодер генерирует аудиотокены на основе этих состояний, а аудиокодек восстанавливает аудиосигнал из аудиотокенов.

Модели:

🟢Parler-TTS Mini - 880 миллионов параметров
🟢Parler-TTS Large - 2,3 миллиарда параметров

Характеристиками речи (пол, темп речи, высота тона и реверберация) можно управлять непосредственно через текстовый промпт. Например:

🟠Добавьте промпт "very clear audio" для создания аудио высокого качества, а "very noisy audio" - для высокого уровня фонового шума;
🟠Пунктуация может использоваться для управления просодией генерации - используйте запятые, чтобы добавить небольшие паузы в речь.


▶️Установка и запуск:

# Clone repository and install dependences:
pip install git+https://github.com/huggingface/parler-tts.git

# Inference with random voice
import torch
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer
import soundfile as sf

device = "cuda:0" if torch.cuda.is_available() else "cpu"

model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device)
tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")

prompt = "Hey, how are you doing today?"
description = "A female speaker delivers a slightly expressive and animated speech with a moderate speed and pitch. The recording is of very high quality, with the speaker's voice sounding clear and very close up."

input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device)
prompt_input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)

generation = model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
sf.write("parler_tts_out.wav", audio_arr, model.config.sampling_rate)y



📌Лицензирование : Apache-2.0 license


🟡Модель Parler-TTS Mini
🟡Модель Parler-TTS Large
🟡Arxiv
🟡Demo Video
🟡Google Collab (файнтюн)
🟡Demo
🖥Github [ Stars: 3.4K | Issues: 49 | Forks: 338]


@ai_machinelearning_big_data

#AI #Parler #ML #TTS
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍25🔥54
🌟 🌟 OuteTTS-0.2-500M: обновление ТTS-модели с возможностью клонирования голоса.

OuteTTS-0.2-500M - улучшенная версия предыдущей модели синтеза речи, основанная на Qwen-2.5-0.5B и обученная на крупных и более качественных датасетах Emilia-Dataset, LibriTTS-R и Multilingual LibriSpeech. Контекст длиной 4096 токенов обеспечивает ~ 54 секунды генерации звука.

Новая версия получила изменения относительно версии 0.1:

🟢Повышенная точность. Модель лучше следует промптам и показывает более высокую согласованность выходных данных по сравнению с предыдущей версией;

🟢Естественная речь. V 0.2 генерирует более естественную и плавную синтезированную речь;

🟢Расширенный словарь. Модель обучена на более чем 5 млрд. токенов аудио;

🟢Клонирование голоса. Улучшены возможности клонирования голоса с большей вариативностью и точностью;

🟢Многоязычная поддержка. Добавлена экспериментальная поддержка китайского, японского и корейского языков.


⚠️ Для инференса GGUF-версии модели необходимо установить llama-cpp-python.


▶️ Установка и пример локального инференса:

# Install from PyPI
pip install outetts

# Interface Usage
import outetts

# Configure the model
model_config = outetts.HFModelConfig_v1(
model_path="OuteAI/OuteTTS-0.2-500M",
language="en", # Supported languages in v0.2: en, zh, ja, ko
)

# Initialize the interface
interface = outetts.InterfaceHF(model_version="0.2", cfg=model_config)

# Optional: Create a speaker profile (use a 10-15 second audio clip)
speaker = interface.create_speaker(
audio_path="path/to/audio/file",
transcript="Transcription of the audio file."
)

# Optional: Load speaker from default presets
interface.print_default_speakers()
speaker = interface.load_default_speaker(name="male_1")

output = interface.generate(
text="%Prompt Text%%.",
temperature=0.1,
repetition_penalty=1.1,
max_length=4096,

# Optional: Use a speaker profile
speaker=speaker,
)

# Save the synthesized speech to a file
output.save("output.wav")


📌Лицензирование кода : Apache 2.0 License.

📌Лицензирование модели: CC-BY-NC-4.0 License.


🟡Страница проекта
🟡Модель
🟡GGUF версия
🟡Demo
🟡Сообщество в Discord
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #TTS #OuteTTS
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍29🔥116😁2👻1
🌟 Fish Speech V1.5: модель преобразования текста в речь и клонирования голоса.

Fish Speech - модель генерации TTS обновилась до версии 1.5. Эта версия обучалась на 1 млн.часов мультиязычных аудиоданных и заняла 2 место в бенчмарке TTS-Arena (как "Anonymous Sparkle").

Заявлена задержка <150 мс с высококачественным мгновенным клонированием голоса.

▶️Языковая структура обучающего корпуса версии 1.5:

🟢Английский (en) >300 тыс. часов
🟢Китайский (zh) >300 тыс. часов
🟢Японский (ja) >100 тыс. часов
🟢Немецкий (de) ~20 тыс. часов
🟢Французский (fr) ~20 тыс. часов
🟢Испанский (es) ~20 тыс. часов
🟢Корейский (ko) ~20 тыс. часов
🟢Арабский (ar) ~20 тыс. часов
🟠Русский (ru) ~20 тыс. часов
🟢Голландский (nl) <10 тыс. часов
🟢Итальянский (it) <10 тыс. часов
🟢Польский (pl) <10 тыс. часов
🟢Португальский (pt) <10 тыс. часов

Fish Speech для локального инференса требует 4Gb GPU и 8 BG GPU для файнтюна. Запуск возможен на MacOS, Linux и Windows в режимах CLI, GUI и WebUI и Docker.

Подробные инструкции по установке, инференсу в различных режимах для каждой платформы, туториал по файнтюну и примеры доступны в документации проекта Fish Speech.

⚠️ Репозиторий на Github еще не обновлен информацией о версии 1.5, а официальное демо от разработчиков поддерживает синтез только на английском, китайском и японском.


📌Лицензирование: CC-BY-NC-SA-4.0 License.


🟡Модель
🟡Demo
🟡Документация
🟡Сообщество в Discord
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #TTS #FIshSpeech
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍32🔥1510
This media is not supported in your browser
VIEW IN TELEGRAM
🌟 Text-to-Speech в браузере на безе OuteTTS.

Простое приложение React + Vite для запуска OuteTTS с помощью Transformers.js и WebGPU.

Попробовать демо можно на HuggingSpace. При первом запуске модель загружается в кэш браузера, это занимает какое-то время.

▶️ Локальная установка и запуск:

# Clone the repository
git clone https://github.com/huggingface/transformers.js-examples.git

# Go to project dir
cd transformers.js-examples/text-to-speech-webgpu

# Install the dependencies via npm
npm i

# Run dev server
npm run dev

# Open your browser and go to http://localhost:5173



🟡Demo
🖥Github


@ai_machinelearning_big_data

#AI #ML #TTS #WebGPU #TransfomersJS
Please open Telegram to view this post
VIEW IN TELEGRAM
👍237🔥6
🌟 Step-Audio: платформа интеллектуального речевого взаимодействия.

Step-Audio – платформа с открытым исходным кодом, объединяющая понимание и генерацию речи для поддержки мультиязычных диалогов (китайский, английский и японский).

Step-Audio способна передавать эмоциональные оттенки, региональные диалекты, различные стили речи и вокала.

Основой Step-Audio является 130B мультимодальная модель, которая объединяет в себе функции распознавания и генерации речи, семантического понимания, ведения диалога, клонирования голоса и синтеза речи. Важным компонентом является собственный токенизатор, позволяющий создавать высококачественный звук без традиционного сбора данных вручную.

▶️ Состав релиза:

Step-Audio-Tokenizer - токенизатор речи. Для лингвистической токенизации используется кодер Paraformer, который квантуется в дискретные представления с частотой 16,7 Гц. Для семантической токенизации - токенизатор CosyVoice, специально разработанный для эффективного кодирования характеристик, необходимых для создания естественных и выразительных речевых результатов, работающий на частоте 25 Гц.

Step-Audio-Chat - мультимодальная LLM с 130 млрд. параметров, которая отвечает за понимание и генерацию человеческой речи.

Step-Audio-TTS-3B - TTS-модель, обученная на крупном синтетическом наборе данных с использованием парадигмы LLM-Chat. Модель поддерживает несколько языков, множество эмоциональных выражений и различные элементы управления стилем голоса. Step-Audio-TTS-3B является первой открытой TTS-моделью, способной генерировать певческий вокал.

StepEval-Audio-360 - датасет, собранный при участии профессиональных аннотаторов и содержит весь спектр возможностей: пение, творчество, ролевые игры, логические рассуждения, понимание голоса, следование голосовым инструкциям, игры, управление речевыми эмоциями и языковые способности на китайском, английском и японском языках.

⚠️ Для локального использования понадобится (41.6Гц): Step-Audio-Tokenizer - 1.5 GB VRAM, Step-Audio-Chat - 256 GB VRAM, Step-Audio-TTS-3B - 8GB VRAM.

⚠️ Наиболее качественный инференс, по словам разработчиков, достигается на 4xA800/H800 GPU с 80GB или больше.


▶️Локальная установка и инференс на примере TTS:

# Clone the repository
git clone https://github.com/stepfun-ai/Step-Audio.git

# Create a Conda venv
conda create -n stepaudio python=3.10
conda activate stepaudio

# Install dependencies
cd Step-Audio
pip install -r requirements.txt

git lfs install
git clone https://huggingface.co/stepfun-ai/Step-Audio-TTS-3B

# TTS inference
python tts_inference.py --model-path --output-path --synthesis-type use_tts_or_clone


📌Лицензирование: Apache 2.0 License.


🟡Коллекция на HF
🟡Техотчет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #ASR #TTS #StepAudio
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍4912🔥81
🖥 PDF to Podcas- еще один проект преобразования текста в подкасты от NVIDIA

Он предназначенный для преобразования PDF-документов в персонализированный аудиоконтент с использованием технологий генеративного ИИ.

Ключевые компоненты:

- Инструмент преобразования PDF в Markdown: Извлекает содержимое из PDF-файлов и конвертирует его в формат Markdown для дальнейшей обработки.

- Сервис создания монологов или диалогов
: Обрабатывает Markdown-контент, обогащая или структурируя его для создания естественного аудиоконтента.

- Сервис преобразования текста в речь (TTS): Преобразует обработанный контент в высококачественную речь.

Преимущества использования:

- Персонализация: Возможность адаптации решения под специфические потребности организации, включая брендинг, аналитику, реальное время перевода или интерфейс цифрового человека для повышения вовлеченности.
- Конфиденциальность: Решение соответствует требованиям конфиденциальности на всех этапах обработки данных.
- Гибкость: Модульная структура позволяет добавлять дополнительные функции, соответствующие потребностям пользователей.

- Микросервисы NVIDIA NIM используются для развертывания и масштабирования моделей на GPU.

- Модели Llama 3.1 применяются для обработки и генерации текста.

- Langchain используется для обработки и интеграции данных.

- Docling применяется для парсинга документов.

- ElevenLabs предоставляет сервисы преобразования текста в речь.

Лицензирование:
Использование моделей в этом проекте регулируется NVIDIA AI Foundation Models Community License.

Github: https://github.com/NVIDIA-AI-Blueprints/pdf-to-podcast
Project: build.nvidia.com/nvidia/pdf-to-podcast

@ai_machinelearning_big_data


#nim #tts #pdftopodcast
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
1👍4811🔥6🗿2🕊1
✔️ ElevenLabs представили новую функцию для преобразования аудио в текст, которая действительно впечатляет!

ElevenLabs представила Scribe — своё первое решение для преобразования речи в текст, которое уже завоевало звание лидера по точности в этой области. В независимых тестах Scribe достигла Word Error Rate всего 7.7%, что значительно лучше результатов Whisper v2 и v3 (~10%).

Scribe поддерживает 99 языков, включая русский.

Основные преимущества:
- Отличное различение голосов разных спикеров
- Возможность экспорта результатов в самые популярные форматы, включая SRT для субтитров на YouTube
- Бесплатное использование доступно до 9 апреля

💰 Ценообразование: Scribe относится к премиум-классу и стоит 6,67 долл. за 1 тыс. минут аудио, что значительно ниже, чем у Hyperscaler, но выше, чем у Whisper.

Бенчмарки: https://artificialanalysis.ai/speech-to-text
Потестить можно здесь: https://elevenlabs.io/speech-to-text

@ai_machinelearning_big_data


#ElevenLabs #tts
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍36🔥1912
This media is not supported in your browser
VIEW IN TELEGRAM
Осенью 2021 года Яндекс впервые представил функцию закадрового перевода видео в Браузере.

Сначала система использовала два стандартных голоса — мужской и женский — затем перешла на ограниченный набор синтезированных голосов. Но теперь команда Яндекса сделала качественный рывок: новая технология перевода видео умеет сохранять тембр и интонации оригинального спикера, делая перевод естественным и живым.

✔️ Как это работает?
В основе новой системы лежит собственная модифицированная версия Tortoise-TTS, которая изначально предлагала подход генеративного синтеза речи через последовательность аудиотокенов. Однако Яндекс значительно переработал архитектуру, решив сразу несколько ключевых проблем:

1. Улучшение качества zero-shot синтеза

Переход на фонемное представление текста.
Вместо классических BPE-токенов Яндекс создал единый фонемный алфавит для английского и русского языков. Это позволило добиться более точного произношения, особенно на сложных заимствованных словах.

🟡Интеграция биометрических эмбеддингов.
Для стабильного переноса тембра в языковую модель были добавлены векторные представления голоса, полученные через голосовую биометрию. Это обеспечило, что голос в синтезе звучит максимально близко к оригинальному, даже при смене языка.

🟡Управление качеством через UTMOS.
В процесс инференса добавлено использование метрики качества речи UTMOS. Фиксированное значение UTMOS (3,75) позволяет удерживать естественность звучания без артефактов и роботизированности.

2. Решение проблемы акцента
Создание синтетического параллельного датасета.
Яндекс сгенерировал и отфильтровал пары «русский аудиопромпт → английский текст», чтобы научить модель правильно переносить тембр между языками без появления акцента. В результате процент синтеза с акцентом снизился с 50% до 5%🔥

3. Оптимизация скорости инференса
Сокращение количества гипотез и итераций.

Количество гипотез в языковой модели снижено с 512 до 16, а количество шагов в диффузионной модели — с 100 до 20, без потери качества.

Ускорение вычислений.
Использование torch.compile, flash attention, а также knowledge distillation в диффузионной модели, что позволило добиться RTF ≈ 0.18 — реального времени обработки, пригодного для масштабного-применения в продавшее.

4. Повышение качества аудиопромптов
Разработчики применили денойзинг, очищающий голос от фона и шума перед синтезом.

Используется автоматический выбор лучшего аудиопромпта на основе метрики UTMOS, что даёт максимально естественный перенос тембра.

🌟 Чего удалось добиться?
Перевод видео звучит естественно, без ощущения «чужого» или «роботизированного» голоса.

🟢Голос сохраняет интонации и тембр оригинала.

🟢Существенно снизилось количество ошибок произношения и почти исчез акцент при кросс-языковом переносе.

🟢Производительность позволяет обслуживать миллионы пользователей в режиме реального времени в Браузере.

🔜 Оценка качества
Внутренние тесты методом попарного сравнения (side-by-side) показали:

Новый перевод предпочтительнее старой версии в 72% случаев.

При сравнении с ElevenLabs:

- В полном переводе видео Яндекс выигрывает в 62% случаев.

При сравнении только качества озвучки Яндекс выигрывает в 46% случаев.

Где работает?

Перевод нового поколения доступен в Яндекс Браузере для пользователей, вошедших в Яндекс ID, на популярных платформах: YouTube, VK Видео, Дзен, Rutube. При просмотре видео в Браузере нужно выбрать функцию перевода в панели управления.

🌟 Что дальше?
Команда Яндекса продолжает развивать технологию.

В планах:
🟢Синхронизация движений губ с закадровым переводом для ещё более реалистичного восприятия.

🟢Дальнейшее ускорение инференса без потерь в качестве.

Итог:
Яндекс создал передовую систему мультиязычного генеративного синтеза, объединив глубокие фундаментальные исследования и серьёзные инженерные оптимизации. Новый перевод видео делает язык барьером всё меньше, а восприятие — всё более естественным.

@ai_machinelearning_big_data


#yandex #tts
Please open Telegram to view this post
VIEW IN TELEGRAM
👍100🔥5119🥱4🎉2🤣2🥰1🌭1🤨1
🌟 Voila: набор голосовых моделей для взаимодействия в реальном времени и roleplay.

Voila — семейство голосовых языковых моделей с поддержкой 6 языков (английский, китайский, французский, немецкий, японский и корейский), которое амбициозно позиционирует себя как конкурентов Siri или Alexa.

Классические системы используют конвейер из модулей: ASR, обработка текста LLM и затем TTS. Этот пайплайн порождает задержки до нескольких секунд, теряет эмоции и тон голоса. Voila обрабатывает аудио напрямую через end-to-end архитектуру. Модель делит звук на семантические и акустические токены, сохраняя нюансы акцента и интонации, а кастомное LLM-ядро отвечает за осмысленные ответы. В архитектуре Voila задержка составляет всего 300 мс — как у человека.

В тестах на собственном бенчмарке в задачах ASR Voila показала уровень ошибок (WER) 2,7% против 5,7% (Moshi), 3,6% (FastConformer). Для TTS ее аудио настолько естественно, что система ошибается в расшифровке всего в 2,8% случаев (7,7 у YourTTS, 4,7 у Moshi).

▶️ Состав релиза:

🟢Voila-base - базовая модель для обработки голоса и текста, поддерживает ASR (распознавание речи) и TTS (синтез речи). Основа для остальных версий.

🟢Voila-Chat - модель для диалогов. Генерирует естественные ответы с учетом контекста, сохраняет эмоции и интонации. Подходит для голосовых ассистентов и чат-ботов.

🟢Voila-Autonomous - превью-версия полнодуплексной модели. Может слушать и говорить одновременно, имитируя живое общение: перебивает, вставляет реплики-подтверждения («угу»), реагирует на эмоции в реальном времени.

🟢Voila-Audio-alpha - экспериментальная версия для анализа аудио. Распознаёт неречевые звуки (шум, эмоции), идентифицирует говорящего по тембру.

🟠Voila-Tokenizer - аудио-токенайзер. Преобразует аудио в семантические и акустические токены. Разделяет смысл (слова) и звуковые нюансы (акцент, тон), чтобы LLM эффективнее обучалась на аудиоданных. База всех моделей Voila.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🟡Demo
🟡Сообщество в Discord
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #ASR #TTS #VOILA #Matrix
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6031🥰12🔥7😁4