Автономные агенты, способные управлять рабочим столом - это Грааль современного HCI. Но их обучение сопряжено с трудностями: GUI созданы для людей, а не для машин, а масштабирование RL упирается в неэффективность и нестабильность сред.
В Z.ai сделали фреймворк COMPUTERRL, который лег в основу агента AutoGLM-OS. Результат - state-of-the-art на бенчмарке OSWorld: 48.1% успешных выполнений и это лучше, чем у OpenAI CUA 03 (42.9%), UI-TARS-1.5 (42.5%) и Claude 4.0 Sonnet (30.7%).
OSWorld — это крупный бенчмарк из 369 заданий для проверки многомодальных ИИ-агентов в реальных условиях. Он работает в Ubuntu, Windows и macOS.
В нем ИИ выполняет открытые задачи: работает с веб- и десктопными приложениями, управляет файлами, запускает процессы. Каждое задание имеет четкие начальные условия и скрипты для оценки, чтобы результаты можно было воспроизвести.
Такие высокие показатели - результат комбинации 3-х инноваций.
Фреймворк объединяет GUI-взаимодействия с быстрыми и точными API-вызовами образуя систему, которая через LLM автоматически анализирует примеры задач, генерирует необходимый API-код для стандартных приложений Ubuntu и даже создает для него базовые тесты.
Таким образом, агент использует быстрые API там, где это возможно, и переключается на GUI для общих задач, что повышает и скорость, и надежность. Абляция показала, что переход от GUI-only к API-GUI поднимает средний показатель успеха с 11.2% до 26.2%.
OSWorld крайне ресурсоемок, и запуск множества его экземпляров на одном узле это тот еще квест. Z.ai полностью переработали эту среду, используя qemu-in-docker для легковесного развертывания VM, gRPC для связи между узлами и полностью асинхронный фреймворк AgentRL. Это позволило создать кластер из тысяч параллельных виртуальных сред, к котором онлайн-обучение RL-агентов стало максимально эффективным.
Entropulse решает проблему коллапса энтропии, чередуя фазы RL с периодическими сессиями SFT. Во время RL-фазы собираются все успешные траектории, и на их основе формируется новый SFT-датасет. Затем модель дообучается на этом датасете, что позволяет восстановить её исследовательскую способность без потери производительности. После этого запускается вторая, более эффективная фаза RL.
Эта стратегия позволила AutoGLM-OS, построенному на базе 9B GLM-4, достичь финального результата в 48.1%, в то время как после первой RL-фазы показатель был 42.0%.
@ai_machinelearning_big_data
#AI #ML #Agents #AutoGLM #Zai
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍66❤20🔥7💅3💘2
Media is too big
VIEW IN TELEGRAM
Google начала масштабное развертывание диалогового поискового режима AI Mode для 180 стран. Ранее функция работала только в США, Великобритании и Индии. Пока доступен только английский язык, а страны Евросоюза в список не вошли из-за строгих правил в области данных и ИИ.
Вместе с географическим расширением Google представила первую агентную возможность в AI Mode. Теперь пользователи в США могут находить и бронировать столики в ресторанах через платформы OpenTable и Resy, прямо из поисковой выдачи. В будущем планируется добавить бронирование билетов и запись на услуги. Эта функция пока доступна только подписчикам платного тарифа Google AI Ultra.
9to5google.com
Компания анонсировала бета-версию платформы Game Worlds, на которой пользователи в реальном времени могут создавать и исследовать полностью сгенерированных персонажей, сюжеты и окружения.
Одновременно с этим Runway добавила в свой продукт Act-Two новую функцию «Voices». Она дает возможность подбирать и настраивать голоса для ИИ-персонажей.
Эти нововведения - часть стратегии компании по демократизации создания иммерсивного контента, делая его доступным для авторов без специальных навыков в программировании или анимации.
RunwayML в сети X
В сети появились фото тестовых образцов следующего поколения ИИ-архитектуры Jaguar Shores. Размер корпуса 92,5 мм на 92,5 мм, он включает 4 отдельных кристалла и 8 площадок памяти HBM, что явно указывает на платформу для высокопроизводительных вычислений.
Jaguar Shores станет первым стоечным решением Intel, планируется использование памяти HBM4 от SK Hynix и совместная работа с будущими процессорами Xeon Diamond Rapids.
wccftech.com
NVIDIA выпустила Streaming Sortformer - модель для диаризации речи, которая мгновенно определяет и маркирует участников разговора в реальном времени с низкой задержкой.
Модель оптимизирована для английского и китайского языков, способна отслеживать до 4 говорящих одновременно и предназначена для работы на GPU. По результатам тестов, Streaming Sortformer показывает более низкий уровень ошибок (DER) по сравнению с конкурирующими решениями.
Streaming Sortformer подойдет для применения в колл-центрах, при создании протоколов встреч и в интерактивных голосовых приложениях, где важно точно знать, кто, что и когда сказал. Модель доступна на Hugging Face.
developer.nvidia.com
AMD выпустила новейшую технологию масштабирования изображения FidelityFX Super Resolution 4 (FSR 4). Это часть обновления FidelityFX SDK 2.0, где AMD впервые внедряет алгоритм апскейлинга на основе машинного обучения для улучшения качества графики и производительности в играх.
По сравнению с предыдущей версией 3.1, FSR 4 показывает улучшения в детализации изображения и временной стабильности, а также снижает артефакты гостинга движущихся объектов. FSR 4 поддерживается только видеокартами AMD Radeon RX 9000 серии и выше на архитектуре RDNA 4 и требует DirectX 12. AMD также предоставила плагины FSR 4 для Unreal Engine версий 5.1–5.6.
gpuopen.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤46👍18🔥10❤🔥2🤔1👌1
Большие данные - это топливо для ИИ. Но как их использовать, чтобы не нарушить приватность, например датасета, где есть персональные данные?
Один из вариантов - метод дифференциально-приватного отбора. Он выбирает из огромного набора уникальные элементы так, чтобы нельзя было соотнести их с конкретным человеком. А если данных - больше миллиарда? Для этого нужен более надежный подход.
Таким алгоритмом стал Max Adaptive Degree (MAD), представленный Google на ICML 2025. Он не только эффективнее других параллельных методов, но и работает с наборами данных на десятки и сотни миллиардов записей.
Но тут появляется новая проблема - популярные элементы получают избыточный вес, который можно было бы использовать для менее частых, но ценных данных.
MAD решает ее с помощью адаптивного взвешивания, перераспределяя вес: забирает часть у популярных элементов и отдает тем, чьи значения уже находятся у порога. Это позволяет отобрать больше полезных данных без потери приватности.
Простой пример: представьте 100 пользователей, у каждого по 3 элемента. Один элемент (A) есть у всех, а остальные элементы уникальны. В базовом алгоритме элемент A получит слишком много веса (намного больше необходимого), а уникальные элементы - слишком мало. MAD "забирает" часть веса у A и распределяет его между уникальными элементами, давая им шанс пройти порог.
Метод можно использовать в несколько итераций, публикуя промежуточные результаты с шумом. Так можно еще точнее распределять вес между раундами.
В первом раунде запускается MAD как обычно, а во втором удаляются уже найденные элементы и те, которые явно не пройдут порог. Для остальных элементов применяется "смещение" веса на основе данных первого раунда.
На практике MAD показал отличные результаты. Всего за 2 этапа он отобрал больше полезных элементов, чем другие методы. Например, в Common Crawl (800 млрд. записей) он выбрал набор слов, который покрыл 99.9% всех записей и 97% уникальных слов с полным соблюдением приватности.
@ai_machinelearning_big_data
#AI #ML #Selection #MAD #Google
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤61👍24🔥13🗿5
Media is too big
VIEW IN TELEGRAM
Nvidia приостановила выпуск своих ИИ-чипов H20, разработанных специально для китайского рынка в обход американских санкций. Причиной стало новое распоряжение Пекина, которое вынуждает местные компании отказаться от продукции Nvidia из-за опасений, связанных с безопасностью.
В результате около 700 000 уже произведенных и готовых к отправке чипов, которые ранее получили одобрение от правительства США, теперь простаивают на складах партнера по упаковке. Вся цепочка поставок оказалась парализованной, несмотря на то, что Вашингтон и Nvidia уже достигли политического соглашения.
theinformation.com
Cohere выпустила ризонинг-модель Command A Reasoning, оптимизированную для ресурсоемких задач, требующих логических рассуждений: работа в агентных системах и анализ больших документов. По заявлению разработчиков, на бенчмарках BFCL-v3, Tau-bench и DeepResearch Bench модель превосходит gpt-oss-120b и Mistral Magistral Medium.
Command A Reasoning может работать на одном GPU H100 или A100 с контекстным окном в 128 тыс. токенов, которое можно расширить до 256 000 токенов на нескольких GPU.
Модель уже доступна на платформе Cohere, а на Hugging Face выложена версия для некоммерческого использования под лицензией CC-BY-NC-4.0.
cohere.com
ElevenLabs представила обновленную модель для синтеза речи Eleven v3. Она уже доступна в альфа-версии через API. Модель знает более 70 языков (включая русский) и получила расширенные возможности для передачи эмоций и дополнительные элементы управления голосом.
Одной из главных особенностей стал режим «диалог», который может обрабатывать неограниченное количество спикеров в одном аудио. Для управления интонациями и эмоциональными оттенками речи добавлены специальные аудиотеги.
Доступ к API Eleven v3 (alpha) можно получить с бесплатного аккаунта, однако некоторые функции могут быть платными.
elevenlabs.io
Anthropic создала ИИ-классификатор, который выявляет опасные запросы, касающиеся технологий, связанных с биологическим, химическим и ядерным оружием. Предварительные тесты показали точность системы на уровне 96%.
Цель классификатора - фильтровать информацию об оружии массового поражения еще на этапе предварительного обучения моделей. Такой подход должен предотвратить ситуации, когда чат-боты могут предоставить инструкции по созданию оружия, не влияя при этом на их способность выполнять безопасные задачи. В Anthropic в очередной раз напомнили, что безопасность должна быть фундаментальным принципом при разработке ИИ.
anthropic.com
Илон Маск объявил о запуске новой софтверной компании Macrohard, созданной в рамках его инициативы xAI. Главная цель проекта - построить полностью управляемую ИИ программную корпорацию, которая будет симулировать деятельность Microsoft и конкурировать с ней .
По замыслу Маска, сотни специализированных ИИ-агентов будут совместно работать над созданием программных продуктов, полностью воспроизводя цифровые операции гиганта. Название Macrohard является явной ироничной отсылкой к Microsoft, подчеркивая амбиции проекта стать его прямым конкурентом в сфере ПО.
Elon Musk в сети X
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤70😁43👍21🔥9🙉4⚡2👏2👀2💋1🤓1💘1
Группа инженеров из Google DeepMind опубликовали 12-ю главу своего он-лайн учебника "How to Scale Your Model: A Systems View of LLMs on TPUs"
How to Scale Your Model - практико-ориентированное руководство по масштабированию LLM из 12 разделов для разработчиков и исследователей. Оно объясняет, как анализировать и оптимизировать производительность модели, учитывая системные ресурсы: вычисления, память и пропускную способность.
Пособие научит выбирать оптимальные стратегии параллелизма, оценивать стоимость и время обучения и инференса, а также глубже понять взаимодействие между TPU/GPU и алгоритмами масштабирования как на одном, так и на тысячах ускорителей.
12-я глава - глубокое техническое руководство по архитектуре GPU и стратегиям масштабирования больших моделей. В ней детально разбирается устройство современных GPU NVIDIA: Streaming Multiprocessors, Tensor Cores, иерархия памяти (HBM, L2, SMEM), все это с подробными сравнительными таблицами характеристик для разных поколений чипов.
Очень подробно выполнено сравнение архитектур GPU и TPU, с объясняем ключевого различия между модульностью GPU и монолитностью TPU.
Особое внимание, что редкость для обучающих материалов, уделено сетевой организации кластеров. Авторы доступно объясняют как GPU соединяются внутри узлов через NVLink/NVSwitch и между узлами через InfiniBand в топологии "Fat tree", и как пропускная способность на каждом уровне влияет на реальную производительность коллективных операций (AllReduce, AllGather).
Описаны основные стратегии параллелизма: Data Parallelism, Tensor Parallelism, Expert Parallelism и Pipeline Parallelism, с разбором их ограничений и примеров из реальных проектов.
В конце главы есть хороший анализ новых возможностей архитектуры Blackwell.
@ai_machinelearning_big_data
#AI #ML #LLM #Scaling #GPU #TPU
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍70❤42🔥19🥰6
Media is too big
VIEW IN TELEGRAM
VibeVoice - опенсорсная система синтеза речи на английском и китайском языках для создания выразительного аудиоконтента длиной до 90 минут с участием до 4 различных спикеров.
В системе используются непрерывные токенизаторы речи на сверхнизкой частоте 7.5 Гц и комбинация из LLM для понимания контекста и диффузионная модель для генерации высококачественного аудио.
Код для инференса уже доступен на GitHub, а модель на 1.5 млрд. параметров и токенизатор - на Hugging Face. Обещают более крупную (7B) и компактную (0.5B) версии модели.
microsoft.github.io
Теперь возможность превращать загруженные документы и заметки в короткие видеопрезентации доступна на 80 языках, включая русский. Ранее функция работала только на английском.
Одновременно компания улучшила и Audio Overviews, позволив создавать более длинные и детализированные аудиосводки на разных языках.
Оба обновления уже начали развертываться и, по заявлению Google, станут доступны всем пользователям по всему миру в течение недели.
blog.google
Jetson AGX Thor - наиболее производительный на сегодняшний день компьютер для периферийных ИИ-вычислений и робототехники. Платформа обещает производительность в 2070 терафлопс (FP4), что примерно в 7.5 раз превосходит предыдущее поколение Jetson Orin.
В основе системы - GPU на архитектуре Blackwell, 14-ядерный процессор Arm и 128 ГБ памяти LPDDR5X. Это позволяет запускать большие языковые и мультимодальные модели локально, обрабатывая данные с нескольких сенсоров с минимальной задержкой. Платформа совместима с программными стеками Nvidia: Isaac, Metropolis и Holoscan.
Набор для разработчиков уже доступен для заказа по цене $3499, а поставки начнутся в следующем месяце. Серийные модули Jetson T5000 для готовых роботов появятся в конце 2025 года по цене $2999 за штуку при заказе от 1000 единиц.
cnbc.com
xAI и X подали в федеральный суд США антимонопольный иск на сумму 1 млрд. долларов против Apple и OpenAI. В иске утверждается, что компании вступили в незаконный сговор с целью захвата рынков смартфонов и генеративного ИИ, нарушая антимонопольное законодательство США.
Согласно 61-страничному документу, эксклюзивная интеграция ChatGPT в iOS и манипуляции с ранжированием в App Store целенаправленно занижают позиции конкурирующих чат-ботов. Это, по мнению Маска, делает "невозможным для любой другой ИИ-компании, кроме OpenAI, достичь первого места в магазине приложений".
В Apple отказались от комментариев. В OpenAI назвали иск "продолжением систематических нападок со стороны господина Маска".
wsj.com
Проблема, по словам Brave, заключается в так называемых "непрямых инъекциях промптов". Злоумышленники могут встраивать вредоносные команды в веб-страницы, которые ИИ-ассистент Comet при анализе контента воспринимает как инструкции от пользователя.
В ходе тестов Brave продемонстрировала, как можно заставить Comet прочитать и отправить атакующим конфиденциальные данные, email-адреса и одноразовые пароли. Perplexity выпустила обновления, однако, проблема все еще не решена полностью.
brave.com
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤46👍18🔥6👀3🤔1
По слухам, которые появились из-за поста инженера DeepMind Патрика Лоебера в сети Х, на этой неделе мы увидим инпейнт-модель для редактирования изображений под названием Nano Banana.
Модель наделала шуму на Lmarena, да и тестеры предварительных версий отмечают способность вносить очень точечные изменения в изображение, не затрагивая другие его элементы.
При этом качество изображений, генерируемое Nano Banana сопоставимо с результатами более крупных и ресурсоемких систем.
Официально Google пока не объявляла дату запуска и не раскрывала информацию о ценах.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
❤58👍18🔥14😁5❤🔥1
Три округа во Флориде готовятся к испытаниям системы беспилотников, предназначенной для нейтрализации нападающих. Дроны, разработанные компанией Campus Guardian Angel, могут быть активированы в течение 5 секунд после сигнала тревоги и достигнуть стрелка за 15 сек.
Они оснащены шариками с перцовым спреем, чтобы ослепить или замедлить преступника, могут разбивать окна для отвлечения внимания и транслировать видео в реальном времени для правоохранителей.
По словам CEO компании, если это не поможет, дроны будут «продолжать таранить» нападающего до прибытия полиции.
Проект уже вызвал серьезные этические вопросы, касающиеся безопасности, но штат выделил на пилотный проект 557 тыс. долларов. Установка систем в школах запланирована на осень, а полноценный запуск — на январь.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
👍91❤25😁21🔥11🤔4🙈3👀1
Deep Think with Confidence (DeepConf) - способ улучшить рассуждения LLM, который в отличие от стандартного голосования по большинству, предлагает фильтровать варианты на лету, используя внутренние сигналы уверенности самой модели.
Идея в том, чтобы не ждать генерации полной цепочки рассуждений, а отслеживать её качество в реальном времени. Для этого придумали метрику "групповой уверенности" (group confidence) — усредненную уверенность модели на небольшом скользящем окне токенов.
Если эта метрика падает ниже определенного порога, генерация траектории рассуждения просто останавливается. Это позволяет отсекать низкокачественные цепочки на ранней стадии, экономя огромное количество токенов. При этом сам метод не требует дополнительного обучения или тюнинга гиперпараметров.
В офлайн-режиме, когда все варианты уже сгенерированы, он позволяет применять взвешенное голосование или фильтрацию. Вместо простого подсчета голосов, каждый ответ взвешивается по уверенности породившей его цепочки рассуждений.
Результаты на бенчмарке AIME 2025: для GPT-OSS-120B стандартное голосование по 512 вариантам (cons@512) даёт точность 97.0%. Взвешивание с фильтрацией по уверенности (DeepConf@512) поднимает эту планку до 99.9%, практически решая бенчмарк.
Здесь происходит та самая ранняя остановка генерации. Для GPT-OSS-120B на том же AIME 2025 DeepConf в агрессивной конфигурации
DeepConf-low
сокращает количество сгенерированных токенов на 84.7% по сравнению с полной генерацией 512 вариантов. При этом точность не только не падает, а даже немного растeт — с 97.1% до 97.9%. В более консервативном режиме,
DeepConf-high
, экономия токенов составляет 56.0%, а точность остается на уровне 97.0%. Схожие результаты наблюдаются и на моделях DeepSeek-8B и Qwen3-32B, где экономия токенов достигает 77.9% и 66.8% соответственно.Для оценки уверенности прогнали несколько метрик, но наиболее эффективными оказались те, что фокусируются на слабых местах в рассуждениях. Например, метрика Bottom 10% Group Confidence (средняя уверенность по 10% наименее уверенных групп токенов) и Tail Confidence (уверенность на последних токенах цепочки) оказались лучше, чем простое усреднение по всему трейсу.
Порог для ранней остановки определяется на лету для каждого нового промпта. Сначала генерируется небольшое количество "разогревочных" трасс, на основе которых вычисляется порог уверенности. Затем запускается основная генерация, и любой вариант, чья групповая уверенность падает ниже этого порога, немедленно останавливается.
@ai_machinelearning_big_data
#AI #ML #LLM #CoT #DEEPCONF
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤43🔥17👍13🗿3
This media is not supported in your browser
VIEW IN TELEGRAM
- Высокая динамическая согласованность — модель генерирует плавную и устойчивую анимацию на протяжении всего видео
- Высокое качество аудио-видео синхронизации — точное соответствие мимики и артикуляции звуку
- Контроль движения и среды через текстовые промпты — возможно задавать жесты, эмоции, фон и поведение персонажа (например, человек «идёт по рельсам», «девочка поёт под дождём», «старик играет на пианино у моря»)
- Поддержка сложных сценариев — включая движение камеры, дождь, ветер, парашют, съёмку в движущемся поезде и другие кинематографические эффекты
🖼️ + 🎵 = 🎥
Wan2.2-S2V принимает на вход одно изображение и аудиофайл, а на выходе создаёт синхронизированное видео, соответствующее заданному промпту.
📊 По результатам тестов модель демонстрирует лучшие или близкие к лучшим показатели среди конкурентов:
- FID ↓ 15.66 — высокое качество видео
- EFID ↓ 0.283 — естественность выражения лица
- CSIM ↑ 0.677 — сохранение идентичности персонажа
- Хорошие результаты на SSIM, PSNR и Sync-C подтверждают визуальную чёткость, стабильность и аудиосинхронизацию
🔓 Проект полностью открытый — исходный код, веса модели.
И судя по всему, что модель совместима с LoRA-адаптерами от Wan 2.x
@ai_machinelearning_big_data
#AI #ML #Wan
Please open Telegram to view this post
VIEW IN TELEGRAM
👍67🔥36❤15🏆3🗿1