🗿 StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis
Github: https://github.com/facebookresearch/StyleNeRF
Video: http://jiataogu.me/style_nerf
Paper: https://arxiv.org/abs/2110.08985
Project: http://jiataogu.me/style_nerf/
Dataset: https://github.com/facebookresearch/StyleNeRF#dataset
@ai_machinelearning_big_data
Github: https://github.com/facebookresearch/StyleNeRF
Video: http://jiataogu.me/style_nerf
Paper: https://arxiv.org/abs/2110.08985
Project: http://jiataogu.me/style_nerf/
Dataset: https://github.com/facebookresearch/StyleNeRF#dataset
@ai_machinelearning_big_data
👍15❤3🔥1
New segmentation task -- reasoning segmentation. The task is designed to output a segmentation mask given a complex and implicit query text.
LISA раскрывает новые возможности сегментации мультимодальных LLM и позволяет решать сложные задачи рассуждения на знание реального мира.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥18👍7❤2❤🔥1
TrustLLM
— инструмент на Python
для комплексного исследования ответов от LLM. TrustLLM рассматривает 6 аспектов ответов: правдивость, безопасность, этичность, соблюдение конфиденциальности и другие.
В этом документе подробно объясняется, как использовать инструмент для оценки эффективности собственных моделей.
pip install trustllm
▪GitHub
▪Arxiv
▪Docs
▪Project
#llm
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍23🔥8❤6
🌟 ManiWAV:— обучение роботизированные системы аудио-визуальному самоконтролю.
Исследователи из Stanford и Сolambia University при поддержке Toyota Research Institute разработали метод аудиовизуального обучения роботизированных манипуляторов, который превосходит некоторые альтернативные подходы по контактным операциям и может быть применим к любой релевантной промышленной среде.
https://github.com/real-stanford/maniwav/blob/main/assets/audio_teaser.jpg?raw=true
Для самостоятельного тестирования и применения нужны:
- совместимость с Universal Manipulation Interface (UMI)
- установить микрофоны на целевой манипулятор (рекомендации + модель грипера с держателем)
- загрузить датасет и модель
Доступны режимы тренировки и тестирования ( под ссылками строки кода для выполнения команд)
Тренировка выполняется при помощи CUDA, рекомендованный GPU: NVIDIA GeForce RTX 3090 24 GB, но есть поддержка multi-GPU
🟡 Страница проекта ManiWAV
🟡 Paper
🟡Summary Video
🖥 GitHub
@ai_machinelearning_big_data
Исследователи из Stanford и Сolambia University при поддержке Toyota Research Institute разработали метод аудиовизуального обучения роботизированных манипуляторов, который превосходит некоторые альтернативные подходы по контактным операциям и может быть применим к любой релевантной промышленной среде.
https://github.com/real-stanford/maniwav/blob/main/assets/audio_teaser.jpg?raw=true
Для самостоятельного тестирования и применения нужны:
- совместимость с Universal Manipulation Interface (UMI)
- установить микрофоны на целевой манипулятор (рекомендации + модель грипера с держателем)
- загрузить датасет и модель
Доступны режимы тренировки и тестирования ( под ссылками строки кода для выполнения команд)
Тренировка выполняется при помощи CUDA, рекомендованный GPU: NVIDIA GeForce RTX 3090 24 GB, но есть поддержка multi-GPU
🟡 Страница проекта ManiWAV
🟡 Paper
🟡Summary Video
🖥 GitHub
@ai_machinelearning_big_data
👍27🔥10❤3
При обучении генеративных моделей большую роль в качестве инференса готовых моделей играет датасет обучения.
Одним из неплохих источников может стать MiraData от Tencent — готовый датасет суммарной продолжительностью видео в 16 тысяч часов, предназначенный для обучения моделей генерации текста в видео. Он включает в себя длинные видеоролики (в среднем 72,1 секунды) с высокой интенсивностью движения и подробными структурированными аннотациями (в среднем 318 слов на ролик).
Для оценки качества датасета была даже специально создана система бенчмарков MiraBench из 17 метрик, оценивающих временную согласованность, движения в кадре, качество видео, и другие параметры. Согласно их результатам, MiroData превосходит другие известные датасеты, доступные в открытых источниках , которые в основном состоят из коротких видеороликов с плавающим качеством и короткими описаниями.
🤗 Hugging Face
@ai_machinelearning_big_data
#Text2Video #Dataset #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍23❤9🔥5
Это репозиторий HuggingFace содержит 60 000 строк формата "Запрос — ответ — функция API" , собранных APIGen, автоматизированным конвейером генерации данных, разработанным для создания поддающихся проверке качественных наборов данных для приложений.
Согласно описанию создателей, все данные в датасете проходят 3 иерархических этапа проверки: проверка формата, проверка выполнение функции и семантическая проверка.
Датасет прошел человеческую оценку 600 выборочных точек данных, и процент корректности превысил 95 %, а оставшиеся 5 % имеют незначительные проблемы, такие как неточные аргументы и т. д.
from
datasets
import
load_dataset
datasets
=
load_dataset
(
"Salesforce/xlam-function-calling-60k"
)
@ai_machinelearning_big_data
#Dataset #LLM #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19🔥4❤3⚡1
MINT-1T — это мультимодальный чередующийся набор данных с открытым исходным кодом, содержащий один триллион текстовых токенов и 3,4 миллиарда изображений.
Помимо этого, в него включены ранее неиспользованные источники: PDF-файлы и документы из ArXivOrg.
Состав и структура датасета :
Процесс обработки длился более 6 месяцев, затрачено 4.2 млн процессорных часов и использовано порядка 2350 процессорных ядер вычислительной мощности.
Датасет был отфильтрован от документов низкого качества и дубликатов, очищен от персональных данных (e-mail, IP-адреса, другие идентификаторы), удален NSFW-контент.
Перед публикацией проведена дополнительная проверка фильтром качества текста из Huggingface Datatrove.
В этом команде разработки помогли инструменты:
Эксперименты показали, что модели, обученные на MINT-1T, превосходят аналоги на существующих датасетах, особенно в задачах визуальных вопросов-ответов и обработки изображений.
@ai_machinelearning_big_data
#AI #Dataset #ML #MLLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍30❤7🔥4👏4⚡2
Med Trinity-25M - крупномасштабный мультимодальный набор данных для медицины из более 25 миллионов изображений в 10 модальностях, с подробными аннотациями для более чем 65 заболеваний.
Аннотации содержат:
MedTrinity-25M подходит для мультимодальных задач: создание медицинских описаний патологий и новообразований, отчетов, задач классификации и сегментации. Этот набор данных может быть использован для подготовки медицинских моделей искусственного интеллекта.
Модели:
# Clone repository
git clone https://github.com/UCSC-VLAA/MedTrinity-25M.git
# Install Package
conda create -n llava-med++ python=3.10 -y
conda activate llava-med++
pip install --upgrade pip # enable PEP 660 support
pip install -e .
# Install cases FOR TRAIN
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
pip install git+https://github.com/bfshi/scaling_on_scales.git
pip install multimedeval
# Pre-train 1 stage
cd MedTrinity-25M
bash ./scripts/med/llava3_med_stage1.sh
# Pre-train 2 stage
bash ./scripts/med/llava3_med_stage2.sh
# Finetune
cd MedTrinity-25M
bash ./scripts/med/llava3_med_finetune.sh
# Eval
cd MedTrinity-25M
bash ./scripts/med/llava3_med_eval_batch_vqa_rad.shs
@ai_machinelearning_big_data
#AI #Dataset #MedTech #ML
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤22🔥9👍8🥰1
OpenMathInstruct-2 состоит из 14 млн. пар "вопрос-решение" (примерно 600 тысяч уникальных вопросов) и является одним из крупнейших общедоступных наборов данных для обучения LLM в математике.
Набор данных создан на основе Llama-3.1-405B-Instruct путем синтеза решений для существующих вопросов из наборов данных MATH и GSM8K и генерации новых задач и решений.
Результаты абляционных экспериментов, которые проводились для поиска оптимальных параметров синтеза, показали, что:
Итоговые данные, включенные в датасет прошли тщательную деконтаминацию с использованием конвейера
lm-sys
и ручной проверки на поиск дубликатов с тестовыми наборами данных. OpenMathInstruct-2 показал высокую эффективность при обучении LLM.
Модель Llama3.1-8B-Base, обученная на OpenMathInstruct-2, превзошла Llama3.1-8B-Instruct на 15,9% по точности на наборе данных MATH, а OpenMath2-Llama3.1-70B обошла Llama3.1-70B-Instruct на 3,9%.
Датасет выпущен в 3-х размерностях: полный набор (примерно 7.5 GB) и уменьшенные версии train_1M (640 Mb), train_2M (1.3 Gb) и train_5M (3.1 Gb).
@ai_machinelearning_big_data
#AI #ML #LLM #MATH #NVIDIA #Dataset
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18❤11🔥4
CogVideoX Factory - репозиторий с набором скриптов для эффективного файнтюна моделей семейства CogVideoX (CogVideoX-2B и CogVideoX-5B) с фокусом на оптимизацию VRAM. CogVideoX Factory позволяет выполнять обучение на GPU с 24 GB.
Проект предоставляет гибкость в выборе между LoRA и файнтюном всей модели для задач "text-to-video" и "IMG-to-video".
Чтобы сделать возможным файнтюн на ограниченных ресурсах, CogVideoX использует методы оптимизации:
CogVideoX Factory предлагает сценарии обучения:
train_text_to_video_lora.sh
;train_image_to_video_lora.sh
;train_text_to_video_sft.sh
.⚠️ Предварительная подготовка данных - один из важнейших условий CogVideoX Factory. Скрипт
prepare_dataset.py
играет ключевую роль в этом процессе, преобразуя видео и аннотации в латенты и эмбединги. Использование предварительно вычисленных латентов и эмбедингов позволяет не загружать VAE и T5 во время обучения.CogVideoX Factory предлагает подробную документацию, в которой объясняются шаги по подготовке датасетов, настройке параметров обучения, запуску инференса, информацию о требованиях к памяти для каждой модели и конфигурации, помогая принять корректные решения о выборе стратегии обучения.
@ai_machinelearning_big_data
#AI #ML #LoRA #T2V #IMG2V #Finetune
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥15👍9❤5