289K subscribers
3.97K photos
694 videos
17 files
4.56K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
加入频道
🌟 Eagle-X5: Обновление семейства MMLM от NVIDIA Research Projects.

Eagle - это семейство MLLM высокого разрешения, построенное на LLaVA. В обновленном до версии X5 наборе представлено 3 модели:

🟢Eagle-X5-7B

🟢Eagle-X5-13B

🟠Eagle-X5-13B-Chat

Архитектура Eagle-X5:

🟠LLM: Eagle-X5 использует Vicuna-v1.5-7B и Vicuna-v1.5-13B для создания текстовых ответов и рассуждений о визуальном вводе;

🟠Vision Encoders: в моделях Eagle-X5 пять энкодеров, предварительно натренированы на различных задачах и разрешениях - CLIP, ConvNeXt, Pix2Struct, EVA-02 и SAM (Segment Anything);

🟠Fusion Module: визуальные признаки, полученные от каждого энкодера, объединяются с помощью поканальной конкатенации;

🟠Projection Layer: используется для проецирования обработанных визуальных признаков в пространство встраивания LLM.

Обучение модели Eagle-X5 проходит в три этапа:

🟢каждый vision encoder индивидуально настраивается с замороженной LLM методом next-token-prediction supervision. Этот этап приводит визуальные представления в соответствие с языковым пространством и устраняет искажения;

🟢проекционный слой тренируется парами изображение-текст для дальнейшего выравнивания визуального и языкового пространства;

🟢SFT-этап, на котором вся модель точно настраивается на основе мультимодальных наборов данных: пары изображение-текст, VQA и мультимодальных диалоговых наборах.

Eagle показывает высокие результаты в мультимодальных бенчмарках LLM, особенно в задачах, чувствительных к разрешению - OCR и понимание документов.

Установка и запуск с GradioUI:

# Clone repository
git clone https://github.com/NVlabs/EAGLE.git
cd Eagle

# Create venv and install requirements
conda create -n eagle python=3.10 -y
conda activate eagle
pip install --upgrade pip # enable PEP 660 support
pip install requirements

# Run Gradio
python gradio_demo.py --model-path ${MODEL_CKPT} --conv-mode vicuna_v1


📌Лицензирование кода : Apache 2.0 License.

📌Лицензирование моделей:  CC-BY-NC-SA-4.0 License.


🟡Набор моделей
🟡Arxiv
🟡Demo
🖥Github [ Stars: 56 | Issues: 1 | Forks: 3]


@ai_machinelearning_big_data

#AI #NVIDIA #ML #EAGLEX5 #MMLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍306🔥5
🌟 Mini-Omni : Мультимодальная речевая модель.

Mini-Omni - open-source MMLM, которая умеет ввод-вывод речи в режиме реального времени. Она построена по предложенному в исследовании методу "Any Model Can Talk", который позволяет добавлять речевые возможности к существующим LLM с минимальными изменениями в их архитектуре.

Функциональные возможности модели:

🟢speech-to-speech в реальном времени. Не требуются дополнительные модели ASR или TTS;

🟢генерация текста и аудио одновременно;

🟢потоковое воспроизведение аудио;

🟢пакетное преобразование "speech-to-text" и "speech-to-speech".

Mini-Omni основана на LLM Qwen2-0.5B с трансформерной архитектурой, состоящей из 24 блоков и internal dimension 896.

Для кодирования речи используется Whisper-small encoder, а для распознавания и синтеза речи добавлены адаптеры ASR, связанные с двухслойной MLP, и ТТS, который добавляет 6 дополнительных трасформерных блоков к существующим у Qwen2.

Mini-Omni обучалась на датасетах Libritts, VCTK, Multilingual LibriSpeech, Open-Orca, Moss’s SFT, Alpaca-GPT4 и другие. Общий объем данных составил около 8000 часов речевых данных и 2 миллиона текстовых записей.

В бенчмарках Mini-Omn продемонстрировала отличные результаты в задачах распознавания речи, немного уступая Whisper-small и VITA.

▶️Установка:

# Create & activate venv
conda create -n omni python=3.10
conda activate omni

# Clone the Repository
git clone https://github.com/gpt-omni/mini-omni.git
cd mini-omni

# Install required packages
pip install -r requirements.txt

# start server
python3 server.py --ip '0.0.0.0' --port 60808


Запуск с Streamlit UI:
# run streamlit with PyAudio
pip install PyAudio==0.2.14
API_URL=http://0.0.0.0:60808/chat streamlit run webui/omni_streamlit.py


Запуск с Gradio UI:
API_URL=http://0.0.0.0:60808/chat python3 webui/omni_gradio.py



📌Лицензирование : MIT License.


🟡Arxiv
🟡Demo
🟡Модель
🖥Github


@ai_machinelearning_big_data

#AI #ML #MMLM #Speech2Speech #MiniOmni
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
27👍21🔥8
🌟 Mini-Omni : Мультимодальная речевая модель.

Mini-Omni - open-source MMLM, которая умеет ввод-вывод речи в режиме реального времени. Она построена по предложенному в исследовании методу "Any Model Can Talk", который позволяет добавлять речевые возможности к существующим LLM с минимальными изменениями в их архитектуре.

Функциональные возможности модели:

🟢speech-to-speech в реальном времени. Не требуются дополнительные модели ASR или TTS;

🟢генерация текста и аудио одновременно;

🟢потоковое воспроизведение аудио;

🟢пакетное преобразование "speech-to-text" и "speech-to-speech".

Mini-Omni основана на LLM Qwen2-0.5B с трансформерной архитектурой, состоящей из 24 блоков и internal dimension 896.

Для кодирования речи используется Whisper-small encoder, а для распознавания и синтеза речи добавлены адаптеры ASR, связанные с двухслойной MLP, и ТТS, который добавляет 6 дополнительных трасформерных блоков к существующим у Qwen2.

Mini-Omni обучалась на датасетах Libritts, VCTK, Multilingual LibriSpeech, Open-Orca, Moss’s SFT, Alpaca-GPT4 и другие. Общий объем данных составил около 8000 часов речевых данных и 2 миллиона текстовых записей.

В бенчмарках Mini-Omn продемонстрировала отличные результаты в задачах распознавания речи, немного уступая Whisper-small и VITA.

▶️Установка:

# Create & activate venv
conda create -n omni python=3.10
conda activate omni

# Clone the Repository
git clone https://github.com/gpt-omni/mini-omni.git
cd mini-omni

# Install required packages
pip install -r requirements.txt

# start server
python3 server.py --ip '0.0.0.0' --port 60808


Запуск с Streamlit UI:
# run streamlit with PyAudio
pip install PyAudio==0.2.14
API_URL=http://0.0.0.0:60808/chat streamlit run webui/omni_streamlit.py


Запуск с Gradio UI:
API_URL=http://0.0.0.0:60808/chat python3 webui/omni_gradio.py



📌Лицензирование : MIT License.


🟡Arxiv
🟡Demo
🟡Модель
🖥Github


@ai_machinelearning_big_data

#AI #ML #MMLM #Speech2Speech #MiniOmni
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍26🔥118🆒1
🌟 LongLLaVA: MMLM, оптимизированная для обработки большого количества изображений.

LongLLaVA - мультимодальная модель, предназначена для разработки приложений, требующих понимания длинных видеороликов, изображений высокого разрешения и сложных мультимодальных сценариев.

В модели применяется гибридная архитектура из комбинации блоков Mamba и Transformer в соотношении 7:1. Для сжатия визуальных данных применяется метод 2D-пулинга, который снижает вычислительные затраты при сохранении производительности.

В процессе обучения применялся трехфазный метод: выравнивание по одному изображению, настройка инструкций по одному изображению и настройка инструкций по нескольким изображениям.

Экспериментальные результаты показали, что LongLLaVA превосходит другие модели с открытым исходным кодом по пониманию в длинном контексте, особенно в задачах поиска, подсчета и упорядочивания.

▶️Технические параметры модели:

🟢Parameters: 53B;
🟢Active parameters: 13B;
🟢Numbers of layers: 24;
🟢Mixture of Experts: 16/Top-2 for each token;
🟢Normalization: RMSNorm;
🟢Attention: Grouped Query Attention;
🟢Activation functions: SwiGLU.


📌Лицензирование : MIT License


🟡Arxiv
🟡Модель
🖥Github


@ai_machinelearning_big_data

#AI #ML #MMLM #LongLLaVA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍295🔥4
⚡️ Molmo: семейство state-of-art MMLM.

Molmo (Multimodal Open Language Model) - это семейство VLM, разработанных в Институте искусственного интеллекта Аллена, для решения задач обработки изображений и текста - создание подробных описаний изображений и выполнение комплексных визуальных операций, например:

🟢ответы на вопросы;
🟢обнаружение и сегментация по текстовому запросу;
🟢подсчет объектов или элементов;
🟢использование в сфере робототехники для изображений или видео;
🟢расширение возможностей VR.

▶️Molmo 72B - флагманская модель на базе Qwen2-72B в роли LLM и ViT-L/14 336px CLIP в роли visial-энкодера. Molmo-72B достигает наивысшего балла в бенчмарках и занимает второе место по человеческой оценке, лишь немного уступая GPT-4o.

▶️Molmo 7B-D и Molmo 7B-O - более утилитарные модели с разницей в исходных LLM (Qwen2-7B и OLMo-7B-1124 соответственно) и все тем же ViT-L/14 336px в качестве энкодера.

▶️ MolmoE 1B - компактная модель на архитектуре Mixture-of-Experts, основанная на OLMoE-1B-7B с 1.5B активных и 7.2B общих параметров, с производительностью, сравнимой с GPT-4V.

Обучение семейства выполнялось в 2 этапа: предварительное обучение на наборе данных PixMo-Cap для генерации аннотаций к изображениям и этап SFT с использованием комбинации академических наборов данных и наборов данных PixMo (PixMo-AskModelAnything, PixMo-Points, PixMo-CapQA, PixMo-Docs, PixMo-Clocks).

Тестирование модели проводилось на 11 бенчмарках: AI2D, ChartQA, VQA v2, DocVQA, InfographicVQA, TextVQA, RealWorldQA, MMMU, Math-Vista, CountBenchQA и Flickr Count.

Результаты показали, что Molmo, особенно модель Molmo-72B, демонстрирует производительность на уровне GPT-4o, превосходя Gemini 1.5 Pro, Flash и Claude 3.5 Sonnet.

⚠️ Модели Molmo могут испытывать трудности с прозрачными изображениями. В качестве решения, разработчики рекомендуют добавлять белый или темный фон к изображениям перед передачей их в модель, например, с помощью библиотеки PIL.


📌Лицензирование : Apache 2.0


🟡Страница проекта
🟡Коллекция моделей на HF
🟡Arxiv
🟡Demo


@ai_machinelearning_big_data

#AI #ML #Molmo #MoE #MMLM
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍306🔥6
🌟 Emu3: набор MMLM, основанный на методе предсказании следующего токена.

Модели Emu3 разработаны для задач мультимодальной генерации и восприятия: генерации изображений и видео по текстовому описанию, понимание визуальных представлений и прогнозирования кадров в видео.

Модель использует токенизатор изображений SBER-MoVQGAN для преобразования видео и изображений в дискретные токены, RMSNorm для нормализации, GQA для механизмов внимания, SwiGLU для активации и RoPE для позиционного кодирования.

Процесс генерации в Emu3 начинается с обработки моделью начальной последовательности токенов (например, текстовое описание для генерации изображения).

Затем Emu3 авторегрессивно предсказывает наиболее вероятный следующий токен в последовательности. Этот процесс продолжается до тех пор, пока не будет сгенерирована вся последовательность, представляющая собой конечный результат (изображение или видео).

▶️ Представлены 3 модели:

🟢Emu3-Chat – модель-чат, анализирует входные изображения и генерирует текстовые ответы;

🟢Emu3-Gen – модель для генерации изображений по текстовому описанию;

🟢Emu3-VisionTokenizer – токенизатор изображений для преобразования изображений и видео в дискретные токены.

Для обучения использовались наборы данных Aquila, LAION-High-Resolution, InternVid, MSCOCO-30K, GenEval, T2I-CompBench, DPG-Bench, SEED-Bench, RealWorldQA, OCRBench и VBench.

Результаты тестирования показывают превосходство Emu3 над SDXL в генерации и сопоставимость с LLaVA-1.6 в задачах интерпретаций изображений.

Инференс моделей пока доступен только в СLI на Transformers, примеры для генерации или описания входного изображения можно найти в репозитории проекта.

⚠️ Информации о технических требованиях по GPU разработчиками Emu3 не предоставлено.

▶️Локальная установка:

# Clone the repository
git clone https://github.com/baaivision/Emu3
cd Emu3

# Install requirements
pip install -r requirements.txt


📌Лицензирование : Apache 2.0 License.


🟡Страница проекта
🟡Коллекция моделей на HF
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #MMLM #Text2Video #Text2Image
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍25🔥64👏1
🌟 NVLM-1.0-D-72B: MMLM от NVIDIA, сопоставимая с лучшими коммерческими аналогами .

NVLM-1.0-D-72B - первая модель семейства NVLM 1.0 производственного уровня, которое позиционируется как SOTA в задачах "vision-language".

Для достижения SOTA - цели в мультимодальное обучение был включен высококачественный набор данных, предназначенный только для текста, наряду со значительным объемом мультимодальных данных по математике и рассуждениям, что расширило математические и программные возможности во всех модальностях.

Архитектура NVLM 1.0 предполагает 3 варианта исполнения:

🟢только декодер NVLM-D,
🟢NVLM-X на основе перекрестного внимания;
🟢NVLM-H с гибридной архитектурой.

Все эти варианты NVLM используют общий визуальный кодер InternViT-6B-448px-V1-5.

Для обработки изображений с высоким разрешением используется динамический подход с высоким разрешением (DHR), при котором изображение разбивается на несколько плиток, каждая из которых кодируется отдельно.

Чтобы повысить эффективность обработки динамических изображений с высоким разрешением в NVLM-D и NVLM-X была разработана конструкция текстового тега плитки. Этот тег добавляется к входной последовательности, чтобы указать начало плитки и ее положение в структуре мозаики. Так генеративные модели лучше понимают структуру изображения.

Эксперименты показали, что добавление тегов плитки значительно улучшает производительность как в задачах, связанных с мультимодальным мышлением (например, MMMU и MathVista), так и в задачах, связанных с распознаванием текста (ChartQA, DocVQA и OCRBench).

Для оценки NVLM 1.0 использовались 9 эталонных тестов Vision language и четыре текстовых теста. Результаты NVLM 1.0 оказались сопоставимыми с результатами ведущих проприетарных и общедоступных моделей, как в задачах на взаимодействие зрения и языка, так и в задачах, ориентированных только на текст.

Разработчики подготовили файл сборки необходимого окружения в Dockerfile для запуска и примеры кода для инференса, использования нескольких GPU и загрузки модели.


📌Лицензирование : CC-BY-NC-4.0 License.


🟡Страница проекта
🟡Модель
🟡Arxiv


@ai_machinelearning_big_data

#AI #ML #MMLM #NVLM #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥20👍127😁1
⚡️ Aria: открытая мультимодальная модель на основе MoE

Rhymes AI опубликовала Aria — первую в мире открытую MMLM, основанную на Mixture-of-Experts. Aria способна обрабатывать текст, изображения, видео и код одновременно, не требуя отдельных настроек для каждого типа данных.

Модель отличается высокой производительностью при обработке мультимодальных и языковых данных, включая изображения различных размеров и соотношений сторон.

Aria использует 3,9 млрд. активных параметров из 25 млрд. общих и обладает длинным контекстным окном в 64 тыс. токенов, что позволяет ей эффективно обрабатывать большие объемы данных, например, создавать аннотации к видео из 256 кадров за 10 секунд.

MoE-архитектура Aria состоит из 66 экспертов. Каждый эксперт структурно идентичен FFN в трансформере. Входной токен направляется только к подмножеству экспертов в каждом слое, это позволяет эффективно распределить вычислительные потребности модели.

ARIA отличается от предыдущих мультимодальных моделей MoE тем, что она обучается с нуля с использованием универсальных экспертов, а не специализированных для каждой модальности.

Обучение ARIA проходило на 6.4 трлн. языковых и 400 млрд. токенах в 4 этапа:

🟢На первых двух обучаются декодеры MoE и ViT на наборах текстовых данных и наборах смеси тект-инображение-видео;

🟢На третьем этапе модель проходит обучение на длинных мультимодальных последовательностях для расширения контекстного окна;

🟢На последнем этапе выполняется дообучение на наборе данных вопрос-ответ для улучшения способности VQA и выполнению инструкций.

ARIA протестирована бенчмарках MMMU, MathVista, DocVQA, ChartQA, TextVQA, MMBench-1.1, EgoSchema, LongVideoBench, VideoMME, MMLU, MATH, ARC Challenge и HumanEval (задачи понимания кода).

Результаты тестирования показывают, что ARIA превосходит открытые модели Pixtral-12B и Llama3.2-11B и демонстрирует конкурентоспособные результаты по сравнению с проприетарными моделями GPT-4o и Gemini-1.5.

⚠️ Так как Aria имеет 25.3 млрд. общих параметров, они могут быть загружены в один A100 (80GB) с точностью bfloat16.

▶️ Разработчики в репозитории на Github подготовили инструкции инференса в Transformers, альтернативный вариант в среде vLLM, ноутбуки различных режимов (с одним и несколькими изображениями, многостраничным PDF и видео) в разных средах, туториалы по подготовке кастомного датасета для обучения, файнтюну с LoRA и Full parameter.


📌Лицензирование : Apache 2.0 License.


🟡Страница проекта
🟡Модель
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #MMLM #MoE #Aria #RhymesAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3515🔥10
🌟 Janus: унифицированная MMLM от DeepSeek

Janus - уникальная мультимодальная модель, которая способна выполнять как задачи понимания, так и генерации изображений. В отличие от других GenAI моделей, Janus использует раздельные пути кодирования визуальной информации, оптимизированные под каждую задачу, находясь в единой архитектуре на основе трансформера.

Это разделение позволяет Janus точно извлекать семантическую информацию из изображений для задач понимания, одновременно сохраняя детализацию и целостность для задач генерации.

Janus имеет 1.3 млрд. параметров с длиной последовательности в 4096.

▶️ Архитектура Janus состоит из 3 компонентов:

🟢Энкодер понимания: извлекает семантические характеристики из изображений, используя SigLIP;

🟢Энкодер генерации: преобразует изображения в последовательность дискретных идентификаторов с помощью VQ-токенизатора;

🟢Унифицированный авторегрессионный трансформер: обрабатывает текстовые и визуальные характеристики.

Процесс обучения Janus проходил в несколько этапов: сначала тренировались адаптеры и Image Heads для связывания визуальных и лингвистических эмбедингов. Затем - предварительное обучение задачам понимания и генерации и, в конце - инструктивная специализация модели при помощи SFT.

▶️ Оценка производительности Janus выполнялась на бенчмарках:

🟠Понимание: MMBench, SEED-Bench, POPE, MME, VQAv2, GQA, MMMU, MM-Vet.

🟠Генерация: MSCOCO-30K, MJHQ-30K, GenEval

Результаты оценки показали, что Janus превосходит предыдущие унифицированные MMLM и демонстрирует конкурентоспособность с некоторыми моделями большего размера.

На MMBench, SEED-Bench и POPE, Janus (1.3B) превзошла LLaVA-v1.5 (7B)12 и Qwen-VL-Chat (7B)13.
На MSCOCO-30K и GenEval Janus превзошла DALL-E 214 и SDXL

Инференс модели пока поддерживается только в CLI на Transformers. Примеры запуска в режимах Multimodal Understanding и Text-to-Image Generation приведены в репозитории проекта.

Способ запуска в GradioUI в коммитах. По отзывам - модель запускается на T4 (16 Gb) в free-tier Google Collab.


📌Лицензирование кода : MIT License.

📌Лицензирование модели: DeepSeek Model License.


🟡Модель
🟡Arxiv
🟡Demo
🖥Github


@ai_machinelearning_big_data

#AI #ML #MMLM #GenAI #Janus #DeepSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
19👍14🔥4
🌟 MMSearch: бенчмарк мультимодальных моделей по способности поиска.

MMSearch — это тест мультимодального поиска, созданный для оценки возможностей LMMs как систем для поиска информации. Этот тест включает тщательно отобранный датасет из 300 запросов из 14 различных областей.

Чтобы обеспечить сложность бенчмарка, запросы классифицируются по двум основным категориям: новости и знания.

Область новостей состоит из недавних событий на момент сбора данных (август 2024 года), это гарантирует, что ответы на запросы не будут содержаться в обучающих данных для LMM.

В области знаний собраны запросы, требующие редких знаний - те, на которые не могут ответить современные LMM, такие как GPT-4o и Claude-3.5.

Оценка выполняется по 4 задачам, итог выполнения сравнивается с результатом аннотаторов, в роли которых выступали люди :

🟢запрос (requery): интерпретация запроса о содержимом или об объекте на изображении;

🟢ранжирование (rerank): выбор наиболее релевантного ответа запросу;

🟢обобщение (summarization): анализ результатов задач requery и rerank и формирование ответа на запрос;

🟢сквозной запрос (End-to-End): тест полного цикла, который включает в себя все три задачи сразу (requery+rerank+summarization).

▶️ Локальное выполнение бенчмарка возможно 3 способами:

🟠в VLMEvalKit. Пакет поддерживает более 150 VLM и MMLM моделей;

🟠путем запуска скриптов оценки MMSearch;

🟠в lmms-eval. Пока поддерживается только одна модель для теста MMSearch - LLaVA-OneVision, расширение возможностей - в процессе, настройка среды - тут.

⚠️ Среднее время выполнения самого сложного теста (End-to-End) на одном GPU A100 - 3-5 часов.

Лидерборд MMSearch 16 моделей, включая результат выполнения тестов человеком можно посмотреть на странице проекта.


🟡Страница проекта
🟡Arxiv
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #MMLM #Benchmark
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥16👍74