### Hugging Face Transformers: Unlock the Power of Open-Source AI in Python
Discover the limitless potential of Hugging Face Transformers, a robust Python library that empowers developers and data scientists to harness thousands of pretrained, open-source AI models. These state-of-the-art models are designed for a wide array of tasks across various modalities, including natural language processing (NLP), computer vision, audio processing, and multimodal learning.
#### Why Choose Hugging Face Transformers?
1. Cost Efficiency: Utilizing pretrained models significantly reduces costs associated with developing custom AI solutions from scratch.
2. Time Savings: Save valuable time by leveraging pre-trained models, allowing you to focus on fine-tuning and deploying your applications faster.
3. Control and Customization: Gain greater control over your AI deployments, enabling you to tailor models to meet specific project requirements and achieve optimal performance.
#### Versatile Applications
Whether you're working on text classification, sentiment analysis, image recognition, speech-to-text conversion, or any other AI-driven task, Hugging Face Transformers provides the tools you need to succeed. The library's extensive collection of models ensures that you have access to cutting-edge technology without the need for extensive training resources.
#### Get Started Today!
Dive into the world of open-source AI with Hugging Face Transformers. Explore detailed tutorials and practical examples at:
https://realpython.com/huggingface-transformers/
to enhance your skills and unlock new possibilities in your projects. Join our community on Telegram (@DataScienceM) for continuous learning and support.
🧠 #HuggingFaceTransformers #OpenSourceAI #PretrainedModels #NaturalLanguageProcessing #ComputerVision #AudioProcessing #MultimodalLearning #AIDevelopment #PythonLibrary #DataScienceCommunity
Discover the limitless potential of Hugging Face Transformers, a robust Python library that empowers developers and data scientists to harness thousands of pretrained, open-source AI models. These state-of-the-art models are designed for a wide array of tasks across various modalities, including natural language processing (NLP), computer vision, audio processing, and multimodal learning.
#### Why Choose Hugging Face Transformers?
1. Cost Efficiency: Utilizing pretrained models significantly reduces costs associated with developing custom AI solutions from scratch.
2. Time Savings: Save valuable time by leveraging pre-trained models, allowing you to focus on fine-tuning and deploying your applications faster.
3. Control and Customization: Gain greater control over your AI deployments, enabling you to tailor models to meet specific project requirements and achieve optimal performance.
#### Versatile Applications
Whether you're working on text classification, sentiment analysis, image recognition, speech-to-text conversion, or any other AI-driven task, Hugging Face Transformers provides the tools you need to succeed. The library's extensive collection of models ensures that you have access to cutting-edge technology without the need for extensive training resources.
#### Get Started Today!
Dive into the world of open-source AI with Hugging Face Transformers. Explore detailed tutorials and practical examples at:
https://realpython.com/huggingface-transformers/
to enhance your skills and unlock new possibilities in your projects. Join our community on Telegram (@DataScienceM) for continuous learning and support.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9🔥2
This media is not supported in your browser
VIEW IN TELEGRAM
Last week we introduced how transformer LLMs work, this week we go deeper into one of its key elements—the attention mechanism, in a new #OpenSourceAI course, Attention in Transformers: Concepts and #Code in #PyTorch
Enroll Free: https://www.deeplearning.ai/short-courses/attention-in-transformers-concepts-and-code-in-pytorch/
Enroll Free: https://www.deeplearning.ai/short-courses/attention-in-transformers-concepts-and-code-in-pytorch/
#LLMCourse #Transformers #MachineLearning #AIeducation #DeepLearning #TechSkills #ArtificialIntelligence
https://yangx.top/DataScienceM
❤4👍3
mcp guide.pdf.pdf
16.7 MB
A comprehensive PDF has been compiled that includes all MCP-related posts shared over the past six months.
(75 pages, 10+ projects & visual explainers)
Over the last half year, content has been published about the Modular Computation Protocol (MCP), which has gained significant interest and engagement from the AI community. In response to this enthusiasm, all tutorials have been gathered in one place, featuring:
* The fundamentals of MCP
* Explanations with visuals and code
* 11 hands-on projects for AI engineers
Projects included:
1. Build a 100% local MCP Client
2. MCP-powered Agentic RAG
3. MCP-powered Financial Analyst
4. MCP-powered Voice Agent
5. A Unified MCP Server
6. MCP-powered Shared Memory for Claude Desktop and Cursor
7. MCP-powered RAG over Complex Docs
8. MCP-powered Synthetic Data Generator
9. MCP-powered Deep Researcher
10. MCP-powered RAG over Videos
11. MCP-powered Audio Analysis Toolkit
(75 pages, 10+ projects & visual explainers)
Over the last half year, content has been published about the Modular Computation Protocol (MCP), which has gained significant interest and engagement from the AI community. In response to this enthusiasm, all tutorials have been gathered in one place, featuring:
* The fundamentals of MCP
* Explanations with visuals and code
* 11 hands-on projects for AI engineers
Projects included:
1. Build a 100% local MCP Client
2. MCP-powered Agentic RAG
3. MCP-powered Financial Analyst
4. MCP-powered Voice Agent
5. A Unified MCP Server
6. MCP-powered Shared Memory for Claude Desktop and Cursor
7. MCP-powered RAG over Complex Docs
8. MCP-powered Synthetic Data Generator
9. MCP-powered Deep Researcher
10. MCP-powered RAG over Videos
11. MCP-powered Audio Analysis Toolkit
#MCP #ModularComputationProtocol #AIProjects #DeepLearning #ArtificialIntelligence #RAG #VoiceAI #SyntheticData #AIAgents #AIResearch #TechWriting #OpenSourceAI #AI #python
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤10👍1
Forwarded from Python | Machine Learning | Coding | R
10 GitHub repos to build a career in AI engineering:
(100% free step-by-step roadmap)
1️⃣ ML for Beginners by Microsoft
A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.
Includes quizzes, lessons, and hands-on projects, with some videos.
GitHub repo → https://lnkd.in/dCxStbYv
2️⃣ AI for Beginners by Microsoft
This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.
Beginner-friendly, project-based, and full of real-world apps.
GitHub repo → https://lnkd.in/dwS5Jk9E
3️⃣ Neural Networks: Zero to Hero
Now that you’ve grasped the foundations of AI/ML, it’s time to dive deeper.
This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.
GitHub repo → https://lnkd.in/dXAQWucq
4️⃣ DL Paper Implementations
So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.
This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.
GitHub repo → https://lnkd.in/dTrtDrvs
5️⃣ Made With ML
Now it’s time to learn how to go from notebooks to production.
Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.
GitHub repo → https://lnkd.in/dYyjjBGb
6️⃣ Hands-on LLMs
- You've built neural nets.
- You've explored GPTs and LLMs.
Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.
GitHub repo → https://lnkd.in/dh2FwYFe
7️⃣ Advanced RAG Techniques
Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.
This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.
GitHub repo → https://lnkd.in/dBKxtX-D
8️⃣ AI Agents for Beginners by Microsoft
After diving into LLMs and mastering RAG, learn how to build AI agents.
This hands-on course covers building AI agents using frameworks like AutoGen.
GitHub repo → https://lnkd.in/dbFeuznE
9️⃣ Agents Towards Production
The above course will teach what AI agents are. Next, learn how to ship them.
This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.
GitHub repo → https://lnkd.in/dcwmamSb
🔟 AI Engg. Hub
To truly master LLMs, RAG, and AI agents, you need projects.
This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.
GitHub repo → https://lnkd.in/geMYm3b6
(100% free step-by-step roadmap)
A 12-week project-based curriculum that teaches classical ML using Scikit-learn on real-world datasets.
Includes quizzes, lessons, and hands-on projects, with some videos.
GitHub repo → https://lnkd.in/dCxStbYv
This repo covers neural networks, NLP, CV, transformers, ethics & more. There are hands-on labs in PyTorch & TensorFlow using Jupyter.
Beginner-friendly, project-based, and full of real-world apps.
GitHub repo → https://lnkd.in/dwS5Jk9E
Now that you’ve grasped the foundations of AI/ML, it’s time to dive deeper.
This repo by Andrej Karpathy builds modern deep learning systems from scratch, including GPTs.
GitHub repo → https://lnkd.in/dXAQWucq
So far, you have learned the fundamentals of AI, ML, and DL. Now study how the best architectures work.
This repo covers well-documented PyTorch implementations of 60+ research papers on Transformers, GANs, Diffusion models, etc.
GitHub repo → https://lnkd.in/dTrtDrvs
Now it’s time to learn how to go from notebooks to production.
Made With ML teaches you how to design, develop, deploy, and iterate on real-world ML systems using MLOps, CI/CD, and best practices.
GitHub repo → https://lnkd.in/dYyjjBGb
- You've built neural nets.
- You've explored GPTs and LLMs.
Now apply them. This is a visually rich repo that covers everything about LLMs, like tokenization, fine-tuning, RAG, etc.
GitHub repo → https://lnkd.in/dh2FwYFe
Hands-on LLMs will give you a good grasp of RAG systems. Now learn advanced RAG techniques.
This repo covers 30+ methods to make RAG systems faster, smarter, and accurate, like HyDE, GraphRAG, etc.
GitHub repo → https://lnkd.in/dBKxtX-D
After diving into LLMs and mastering RAG, learn how to build AI agents.
This hands-on course covers building AI agents using frameworks like AutoGen.
GitHub repo → https://lnkd.in/dbFeuznE
The above course will teach what AI agents are. Next, learn how to ship them.
This is a practical playbook for building agents covering memory, orchestration, deployment, security & more.
GitHub repo → https://lnkd.in/dcwmamSb
To truly master LLMs, RAG, and AI agents, you need projects.
This covers 70+ real-world examples, tutorials, and agent app you can build, adapt, and ship.
GitHub repo → https://lnkd.in/geMYm3b6
#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3
Forwarded from Python | Machine Learning | Coding | R
Auto-Encoder & Backpropagation by hand ✍️ lecture video ~ 📺 https://byhand.ai/cv/10
It took me a few years to invent this method to show both forward and backward passes for a non-trivial case of a multi-layer perceptron over a batch of inputs, plus gradient descents over multiple epochs, while being able to hand calculate each step and code in Excel at the same time.
= Chapters =
• Encoder & Decoder (00:00)
• Equation (10:09)
• 4-2-4 AutoEncoder (16:38)
• 6-4-2-4-6 AutoEncoder (18:39)
• L2 Loss (20:49)
• L2 Loss Gradient (27:31)
• Backpropagation (30:12)
• Implement Backpropagation (39:00)
• Gradient Descent (44:30)
• Summary (51:39)
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk
It took me a few years to invent this method to show both forward and backward passes for a non-trivial case of a multi-layer perceptron over a batch of inputs, plus gradient descents over multiple epochs, while being able to hand calculate each step and code in Excel at the same time.
= Chapters =
• Encoder & Decoder (00:00)
• Equation (10:09)
• 4-2-4 AutoEncoder (16:38)
• 6-4-2-4-6 AutoEncoder (18:39)
• L2 Loss (20:49)
• L2 Loss Gradient (27:31)
• Backpropagation (30:12)
• Implement Backpropagation (39:00)
• Gradient Descent (44:30)
• Summary (51:39)
#AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5
What is torch.nn really?
This article explains it quite well.
📌 Read
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk
When I started working with PyTorch, my biggest question was: "What is torch.nn?".
This article explains it quite well.
📌 Read
#pytorch #AIEngineering #MachineLearning #DeepLearning #LLMs #RAG #MLOps #Python #GitHubProjects #AIForBeginners #ArtificialIntelligence #NeuralNetworks #OpenSourceAI #DataScienceCareers
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7