This media is not supported in your browser
VIEW IN TELEGRAM
Over the last year, several articles have been written to help candidates prepare for data science technical interviews. These resources cover a wide range of topics including machine learning, SQL, programming, statistics, and probability.
1️⃣ Machine Learning (ML) Interview
Types of ML Q&A in Data Science Interview
https://shorturl.at/syN37
ML Interview Q&A for Data Scientists
https://shorturl.at/HVWY0
Crack the ML Coding Q&A
https://shorturl.at/CDW08
Deep Learning Interview Q&A
https://shorturl.at/lHPZ6
Top LLMs Interview Q&A
https://shorturl.at/wGRSZ
Top CV Interview Q&A [Part 1]
https://rb.gy/51jcfi
Part 2
https://rb.gy/hqgkbg
Part 3
https://rb.gy/5z87be
2️⃣ SQL Interview Preparation
13 SQL Statements for 90% of Data Science Tasks
https://rb.gy/dkdcl1
SQL Window Functions: Simplifying Complex Queries
https://t.ly/EwSlH
Ace the SQL Questions in the Technical Interview
https://lnkd.in/gNQbYMX9
Unlocking the Power of SQL: How to Ace Top N Problem Questions
https://lnkd.in/gvxVwb9n
How To Ace the SQL Ratio Problems
https://lnkd.in/g6JQqPNA
Cracking the SQL Window Function Coding Questions
https://lnkd.in/gk5u6hnE
SQL & Database Interview Q&A
https://lnkd.in/g75DsEfw
6 Free Resources for SQL Interview Preparation
https://lnkd.in/ghhiG79Q
3️⃣ Programming Questions
Foundations of Data Structures [Part 1]
https://lnkd.in/gX_ZcmRq
Part 2
https://lnkd.in/gATY4rTT
Top Important Python Questions [Conceptual]
https://lnkd.in/gJKaNww5
Top Important Python Questions [Data Cleaning and Preprocessing]
https://lnkd.in/g-pZBs3A
Top Important Python Questions [Machine & Deep Learning]
https://lnkd.in/gZwcceWN
Python Interview Q&A
https://lnkd.in/gcaXc_JE
5 Python Tips for Acing DS Coding Interview
https://lnkd.in/gsj_Hddd
4️⃣ Statistics
Mastering 5 Statistics Concepts to Boost Success
https://lnkd.in/gxEuHiG5
Mastering Hypothesis Testing for Interviews
https://lnkd.in/gSBbbmF8
Introduction to A/B Testing
https://lnkd.in/g35Jihw6
Statistics Interview Q&A for Data Scientists
https://lnkd.in/geHCCt6Q
5️⃣ Probability
15 Probability Concepts to Review [Part 1]
https://lnkd.in/g2rK2tQk
Part 2
https://lnkd.in/gQhXnKwJ
Probability Interview Q&A [Conceptual Questions]
https://lnkd.in/g5jyKqsp
Probability Interview Q&A [Mathematical Questions]
https://lnkd.in/gcWvPhVj
🔜 All links are available in the GitHub repository:
https://lnkd.in/djcgcKRT
Types of ML Q&A in Data Science Interview
https://shorturl.at/syN37
ML Interview Q&A for Data Scientists
https://shorturl.at/HVWY0
Crack the ML Coding Q&A
https://shorturl.at/CDW08
Deep Learning Interview Q&A
https://shorturl.at/lHPZ6
Top LLMs Interview Q&A
https://shorturl.at/wGRSZ
Top CV Interview Q&A [Part 1]
https://rb.gy/51jcfi
Part 2
https://rb.gy/hqgkbg
Part 3
https://rb.gy/5z87be
13 SQL Statements for 90% of Data Science Tasks
https://rb.gy/dkdcl1
SQL Window Functions: Simplifying Complex Queries
https://t.ly/EwSlH
Ace the SQL Questions in the Technical Interview
https://lnkd.in/gNQbYMX9
Unlocking the Power of SQL: How to Ace Top N Problem Questions
https://lnkd.in/gvxVwb9n
How To Ace the SQL Ratio Problems
https://lnkd.in/g6JQqPNA
Cracking the SQL Window Function Coding Questions
https://lnkd.in/gk5u6hnE
SQL & Database Interview Q&A
https://lnkd.in/g75DsEfw
6 Free Resources for SQL Interview Preparation
https://lnkd.in/ghhiG79Q
Foundations of Data Structures [Part 1]
https://lnkd.in/gX_ZcmRq
Part 2
https://lnkd.in/gATY4rTT
Top Important Python Questions [Conceptual]
https://lnkd.in/gJKaNww5
Top Important Python Questions [Data Cleaning and Preprocessing]
https://lnkd.in/g-pZBs3A
Top Important Python Questions [Machine & Deep Learning]
https://lnkd.in/gZwcceWN
Python Interview Q&A
https://lnkd.in/gcaXc_JE
5 Python Tips for Acing DS Coding Interview
https://lnkd.in/gsj_Hddd
Mastering 5 Statistics Concepts to Boost Success
https://lnkd.in/gxEuHiG5
Mastering Hypothesis Testing for Interviews
https://lnkd.in/gSBbbmF8
Introduction to A/B Testing
https://lnkd.in/g35Jihw6
Statistics Interview Q&A for Data Scientists
https://lnkd.in/geHCCt6Q
15 Probability Concepts to Review [Part 1]
https://lnkd.in/g2rK2tQk
Part 2
https://lnkd.in/gQhXnKwJ
Probability Interview Q&A [Conceptual Questions]
https://lnkd.in/g5jyKqsp
Probability Interview Q&A [Mathematical Questions]
https://lnkd.in/gcWvPhVj
https://lnkd.in/djcgcKRT
#DataScience #InterviewPrep #MachineLearning #SQL #Python #Statistics #Probability #CodingInterview #AIBootcamp #DeepLearning #LLMs #ComputerVision #GitHubResources #CareerInDataScience
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤8
Data Science Machine Learning Data Analysis
Photo
# 📚 PyTorch Tutorial for Beginners - Part 3/6: Convolutional Neural Networks (CNNs) & Computer Vision
#PyTorch #DeepLearning #ComputerVision #CNNs #TransferLearning
Welcome to Part 3 of our PyTorch series! This comprehensive lesson dives deep into Convolutional Neural Networks (CNNs), the powerhouse behind modern computer vision applications. We'll cover architecture design, implementation tricks, transfer learning, and visualization techniques.
---
## 🔹 Introduction to CNNs
### Why CNNs for Images?
Traditional fully-connected networks (DNNs) fail for images because:
- Parameter explosion: A 256x256 RGB image → 196,608 input features
- No spatial awareness: DNNs treat pixels as independent features
- Translation variance: Objects in different positions require re-learning
### CNN Key Innovations
| Concept | Purpose | Visual Example |
|--------------------|-------------------------------------------------------------------------|-----------------------------|
| Local Receptive Fields | Processes small regions at a time (e.g., 3x3 windows) |  |
| Weight Sharing | Same filters applied across entire image (reduces parameters) | |
| Hierarchical Features | Early layers detect edges → textures → object parts → whole objects |  |
---
## 🔹 Core CNN Components
### 1. Convolutional Layers
### 2. Pooling Layers
### 3. Normalization Layers
### 4. Dropout
---
## 🔹 Building a CNN from Scratch
### Complete Architecture
### Shape Calculation Formula
For a layer with:
- Input size: (Hᵢₙ, Wᵢₙ)
- Kernel: K
- Padding: P
- Stride: S
Output dimensions:
---
#PyTorch #DeepLearning #ComputerVision #CNNs #TransferLearning
Welcome to Part 3 of our PyTorch series! This comprehensive lesson dives deep into Convolutional Neural Networks (CNNs), the powerhouse behind modern computer vision applications. We'll cover architecture design, implementation tricks, transfer learning, and visualization techniques.
---
## 🔹 Introduction to CNNs
### Why CNNs for Images?
Traditional fully-connected networks (DNNs) fail for images because:
- Parameter explosion: A 256x256 RGB image → 196,608 input features
- No spatial awareness: DNNs treat pixels as independent features
- Translation variance: Objects in different positions require re-learning
### CNN Key Innovations
| Concept | Purpose | Visual Example |
|--------------------|-------------------------------------------------------------------------|-----------------------------|
| Local Receptive Fields | Processes small regions at a time (e.g., 3x3 windows) |  |
| Weight Sharing | Same filters applied across entire image (reduces parameters) | |
| Hierarchical Features | Early layers detect edges → textures → object parts → whole objects |  |
---
## 🔹 Core CNN Components
### 1. Convolutional Layers
import torch.nn as nn
# 2D convolution (for images)
conv = nn.Conv2d(
in_channels=3, # Input channels (RGB=3, grayscale=1)
out_channels=16, # Number of filters
kernel_size=3, # 3x3 filter
stride=1, # Filter movement step
padding=1 # Preserves spatial dimensions (with stride=1)
)
# Shape transformation: (batch, channels, height, width)
x = torch.randn(32, 3, 64, 64) # 32 RGB images of 64x64
print(conv(x).shape) # → torch.Size([32, 16, 64, 64])
### 2. Pooling Layers
# Max pooling (common for downsampling)
pool = nn.MaxPool2d(kernel_size=2, stride=2)
print(pool(conv(x)).shape) # → torch.Size([32, 16, 32, 32])
# Adaptive pooling (useful for varying input sizes)
adaptive_pool = nn.AdaptiveAvgPool2d((7, 7))
print(adaptive_pool(x).shape) # → torch.Size([32, 3, 7, 7])
### 3. Normalization Layers
# Batch Normalization
bn = nn.BatchNorm2d(16) # num_features = out_channels
x = conv(x)
x = bn(x)
# Layer Normalization (for NLP/sequences)
ln = nn.LayerNorm([16, 64, 64])
### 4. Dropout
# Spatial dropout (drops entire channels)
dropout = nn.Dropout2d(p=0.25)
---
## 🔹 Building a CNN from Scratch
### Complete Architecture
class CNN(nn.Module):
def __init__(self, num_classes=10):
super().__init__()
self.features = nn.Sequential(
# Block 1
nn.Conv2d(3, 32, kernel_size=3, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.MaxPool2d(2),
# Block 2
nn.Conv2d(32, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2),
# Block 3
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(2),
)
self.classifier = nn.Sequential(
nn.Linear(128 * 4 * 4, 512), # Adjusted based on input size
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(512, num_classes)
)
def forward(self, x):
x = self.features(x)
x = torch.flatten(x, 1) # Flatten all dimensions except batch
x = self.classifier(x)
return x
# Usage
model = CNN().to(device)
print(model)
### Shape Calculation Formula
For a layer with:
- Input size: (Hᵢₙ, Wᵢₙ)
- Kernel: K
- Padding: P
- Stride: S
Output dimensions:
Hₒᵤₜ = ⌊(Hᵢₙ + 2P - K)/S⌋ + 1
Wₒᵤₜ = ⌊(Wᵢₙ + 2P - K)/S⌋ + 1
---
Data Science Machine Learning Data Analysis
Photo
## 🔹 Best Practices for CNN Development
1. Start with pretrained models when possible
2. Use progressive resizing (start with small images, then increase)
3. Monitor class activation maps to debug model focus areas
4. Apply test-time augmentation (TTA) for better inference
5. Use label smoothing for classification tasks
6. Implement learning rate warmup for large batch training
---
### 📌 What's Next?
In Part 4, we'll cover:
➡️ Recurrent Neural Networks (RNNs/LSTMs)
➡️ Sequence Modeling
➡️ Attention Mechanisms
➡️ Transformer Architectures
#PyTorch #DeepLearning #ComputerVision 🚀
Practice Exercises:
1. Modify the CNN to use depthwise separable convolutions
2. Implement a ResNet-18 from scratch
3. Apply Grad-CAM to visualize model decisions
4. Train on CIFAR-100 with CutMix augmentation
5. Compare Adam vs. SGD with momentum performance
https://yangx.top/DataScienceM🌟
1. Start with pretrained models when possible
2. Use progressive resizing (start with small images, then increase)
3. Monitor class activation maps to debug model focus areas
4. Apply test-time augmentation (TTA) for better inference
5. Use label smoothing for classification tasks
6. Implement learning rate warmup for large batch training
# Label smoothing example
criterion = nn.CrossEntropyLoss(label_smoothing=0.1)
# Learning rate warmup
def warmup_lr(epoch, warmup_epochs=5, base_lr=0.001):
return base_lr * (epoch + 1) / warmup_epochs if epoch < warmup_epochs else base_lr
---
### 📌 What's Next?
In Part 4, we'll cover:
➡️ Recurrent Neural Networks (RNNs/LSTMs)
➡️ Sequence Modeling
➡️ Attention Mechanisms
➡️ Transformer Architectures
#PyTorch #DeepLearning #ComputerVision 🚀
Practice Exercises:
1. Modify the CNN to use depthwise separable convolutions
2. Implement a ResNet-18 from scratch
3. Apply Grad-CAM to visualize model decisions
4. Train on CIFAR-100 with CutMix augmentation
5. Compare Adam vs. SGD with momentum performance
# Depthwise separable convolution example
class DepthwiseSeparableConv(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super().__init__()
self.depthwise = nn.Conv2d(in_channels, in_channels, kernel_size=3,
stride=stride, padding=1, groups=in_channels)
self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.pointwise(self.depthwise(x))
https://yangx.top/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
Telegram
Data Science Machine Learning Data Analysis
This channel is for Programmers, Coders, Software Engineers.
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Cross promotion and ads: @hussein_sheikho
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
Cross promotion and ads: @hussein_sheikho
❤1
🌟 Vision Transformer (ViT) Tutorial – Part 1: From CNNs to Transformers – The Revolution in Computer Vision
Let's start: https://hackmd.io/@husseinsheikho/vit-1
Let's start: https://hackmd.io/@husseinsheikho/vit-1
#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #NeuralNetworks #ImageClassification #AttentionIsAllYouNeed
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk
📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
❤3👍1
🌟 Vision Transformer (ViT) Tutorial – Part 2: Implementing ViT from Scratch in PyTorch
Let's start: https://hackmd.io/@husseinsheikho/vit-2
Let's start: https://hackmd.io/@husseinsheikho/vit-2
#VisionTransformer #ViTFromScratch #PyTorch #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #CodingTutorial #AttentionIsAllYouNeed
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk
📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
❤2
🌟 Vision Transformer (ViT) Tutorial – Part 3: Pretraining, Transfer Learning & Real-World Applications
Let's start: https://hackmd.io/@husseinsheikho/vit-3
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk
Let's start: https://hackmd.io/@husseinsheikho/vit-3
#VisionTransformer #TransferLearning #HuggingFace #ImageNet #FineTuning #AI #DeepLearning #ComputerVision #Transformers #ModelZoo
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk
❤3
🌟 Vision Transformer (ViT) Tutorial – Part 4: Beyond Classification – DETR, Segmentation & Video Transformers
Let's start learn: https://hackmd.io/@husseinsheikho/vit-4
#VisionTransformer #DETR #Segmenter #VideoTransformer #MAE #SelfSupervised #Multimodal #AI #DeepLearning #ComputerVision
Let's start learn: https://hackmd.io/@husseinsheikho/vit-4
#VisionTransformer #DETR #Segmenter #VideoTransformer #MAE #SelfSupervised #Multimodal #AI #DeepLearning #ComputerVision
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
🌟 Vision Transformer (ViT) Tutorial – Part 5: Efficient Vision Transformers – MobileViT, TinyViT & Edge Deployment
Read lesson: https://hackmd.io/@husseinsheikho/vit-5
#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers
Read lesson: https://hackmd.io/@husseinsheikho/vit-5
#MobileViT #TinyViT #EfficientViT #EdgeAI #ModelOptimization #ONNX #TensorRT #TorchServe #DeepLearning #ComputerVision #Transformers
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
🌟 Vision Transformer (ViT) Tutorial – Part 6: Vision Transformers in Production – MLOps, Monitoring & CI/CD
Learn more: https://hackmd.io/@husseinsheikho/vit-6
#MLOps #ModelMonitoring #CIforML #MLflow #WandB #Kubeflow #ProductionAI #DeepLearning #ComputerVision #Transformers #AIOps
Learn more: https://hackmd.io/@husseinsheikho/vit-6
#MLOps #ModelMonitoring #CIforML #MLflow #WandB #Kubeflow #ProductionAI #DeepLearning #ComputerVision #Transformers #AIOps
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1
🌟 Vision Transformer (ViT) Tutorial – Part 7: The Future of Vision Transformers – Multimodal, 3D, and Beyond
Learn: https://hackmd.io/@husseinsheikho/vit-7
#FutureOfViT #MultimodalAI #3DViT #TimeSformer #PaLME #MedicalAI #EmbodiedAI #RetNet #Mamba #NextGenAI #DeepLearning #ComputerVision #Transformers
Learn: https://hackmd.io/@husseinsheikho/vit-7
#FutureOfViT #MultimodalAI #3DViT #TimeSformer #PaLME #MedicalAI #EmbodiedAI #RetNet #Mamba #NextGenAI #DeepLearning #ComputerVision #Transformers
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
🔥 Master Vision Transformers with 65+ MCQs! 🔥
Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?
🧠 Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT — all with answers!
🌐 Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq
🔹 Table of Contents
Basic Concepts (Q1–Q15)
Architecture & Components (Q16–Q30)
Attention & Transformers (Q31–Q45)
Training & Optimization (Q46–Q55)
Advanced & Real-World Applications (Q56–Q65)
Answer Key & Explanations
Are you preparing for AI interviews or want to test your knowledge in Vision Transformers (ViT)?
🧠 Dive into 65+ curated Multiple Choice Questions covering the fundamentals, architecture, training, and applications of ViT — all with answers!
🌐 Explore Now: https://hackmd.io/@husseinsheikho/vit-mcq
🔹 Table of Contents
Basic Concepts (Q1–Q15)
Architecture & Components (Q16–Q30)
Attention & Transformers (Q31–Q45)
Training & Optimization (Q46–Q55)
Advanced & Real-World Applications (Q56–Q65)
Answer Key & Explanations
#VisionTransformer #ViT #DeepLearning #ComputerVision #Transformers #AI #MachineLearning #MCQ #InterviewPrep
✉️ Our Telegram channels: https://yangx.top/addlist/0f6vfFbEMdAwODBk
📱 Our WhatsApp channel: https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A
❤6
PyTorch Masterclass: Part 2 – Deep Learning for Computer Vision with PyTorch
Duration: ~60 minutes
Link: https://hackmd.io/@husseinsheikho/pytorch-2
https://yangx.top/DataScienceM💯
Duration: ~60 minutes
Link: https://hackmd.io/@husseinsheikho/pytorch-2
#PyTorch #ComputerVision #CNN #DeepLearning #TransferLearning #CIFAR10 #ImageClassification #DataLoaders #Transforms #ResNet #EfficientNet #PyTorchVision #AI #MachineLearning #ConvolutionalNeuralNetworks #DataAugmentation #PretrainedModels
https://yangx.top/DataScienceM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7
✨ Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset ✨
📖 Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...
🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
📖 Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...
🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
👍1
✨ Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset ✨
📖 Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...
🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
📖 Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...
🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
✨ Sharpen Your Vision: Super-Resolution of CCTV Images Using Hugging Face Diffusers ✨
📖 Table of Contents Sharpen Your Vision: Super-Resolution of CCTV Images Using Hugging Face Diffusers Configuring Your Development Environment Problem Statement How Does Super-Resolution Solve This? State-of-the-Art Approaches Generative Adversarial Networks (GANs) Diffusion Models Implementing Diffus...
🏷️ #ArtificialIntelligence #ComputerVision #DeepLearning #ImageProcessing #MachineLearning #Tutorial
📖 Table of Contents Sharpen Your Vision: Super-Resolution of CCTV Images Using Hugging Face Diffusers Configuring Your Development Environment Problem Statement How Does Super-Resolution Solve This? State-of-the-Art Approaches Generative Adversarial Networks (GANs) Diffusion Models Implementing Diffus...
🏷️ #ArtificialIntelligence #ComputerVision #DeepLearning #ImageProcessing #MachineLearning #Tutorial
✨ Unlocking Image Clarity: A Comprehensive Guide to Super-Resolution Techniques ✨
📖 Table of Contents Unlocking Image Clarity: A Comprehensive Guide to Super-Resolution Techniques Introduction Configuring Your Development Environment Need Help Configuring Your Development Environment? What Is Super-Resolution? Usual Problems with Low-Resolution Imagery Traditional Computer Vision A...
🏷️ #ArtificialIntelligence #ComputerVision #DeepLearning #ImageProcessing #MachineLearning #TechnologyApplications #Tutorial
📖 Table of Contents Unlocking Image Clarity: A Comprehensive Guide to Super-Resolution Techniques Introduction Configuring Your Development Environment Need Help Configuring Your Development Environment? What Is Super-Resolution? Usual Problems with Low-Resolution Imagery Traditional Computer Vision A...
🏷️ #ArtificialIntelligence #ComputerVision #DeepLearning #ImageProcessing #MachineLearning #TechnologyApplications #Tutorial
✨ CycleGAN: Unpaired Image-to-Image Translation (Part 1) ✨
📖 Table of Contents CycleGAN: Unpaired Image-to-Image Translation (Part 1) Introduction Unpaired Image Translation CycleGAN Pipeline and Training Loss Formulation Adversarial Loss Cycle Consistency Summary Citation Information CycleGAN: Unpaired Image-to-Image Translation (Part 1) In this tutorial, yo...
🏷️ #ComputerVision #CycleGAN #DeepLearning #Keras #KerasandTensorFlow #TensorFlow #UnpairedImageTranslation
📖 Table of Contents CycleGAN: Unpaired Image-to-Image Translation (Part 1) Introduction Unpaired Image Translation CycleGAN Pipeline and Training Loss Formulation Adversarial Loss Cycle Consistency Summary Citation Information CycleGAN: Unpaired Image-to-Image Translation (Part 1) In this tutorial, yo...
🏷️ #ComputerVision #CycleGAN #DeepLearning #Keras #KerasandTensorFlow #TensorFlow #UnpairedImageTranslation
✨ Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset ✨
📖 Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...
🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
📖 Table of Contents Training YOLOv12 for Detecting Pothole Severity Using a Custom Dataset Introduction Dataset and Task Overview About the Dataset What Are We Detecting? Defining Pothole Severity Can the Pothole Severity Logic Be Improved? Configuring Your Development Environment Training…...
🏷️ #ComputerVision #DeepLearning #ObjectDetection #Tutorial #YOLO
✨ People Tracker with YOLOv12 and Centroid Tracker ✨
📖 Table of Contents People Tracker with YOLOv12 and Centroid Tracker Introduction Why People Tracker Monitoring Matters How YOLOv12 Enables Real-Time Applications Configuring Your Development Environment Downloading the Input Video Install gdown Download the Video Visualizing the Inference and Trackin...
🏷️ #ComputerVision #ObjectDetection #PeopleTracker #Tutorial #YOLOv12
📖 Table of Contents People Tracker with YOLOv12 and Centroid Tracker Introduction Why People Tracker Monitoring Matters How YOLOv12 Enables Real-Time Applications Configuring Your Development Environment Downloading the Input Video Install gdown Download the Video Visualizing the Inference and Trackin...
🏷️ #ComputerVision #ObjectDetection #PeopleTracker #Tutorial #YOLOv12
✨ Meet BLIP: The Vision-Language Model Powering Image Captioning ✨
📖 Table of Contents Meet BLIP: The Vision-Language Model Powering Image Captioning What Is Image Captioning and Why Is It Challenging? Why It’s Challenging Why Traditional Vision Tasks Aren’t Enough Configuring Your Development Environment A Brief History of Image Captioning Models…...
🏷️ #ComputerVision #DeepLearning #ImageCaptioning #MultimodalAI #Tutorial
📖 Table of Contents Meet BLIP: The Vision-Language Model Powering Image Captioning What Is Image Captioning and Why Is It Challenging? Why It’s Challenging Why Traditional Vision Tasks Aren’t Enough Configuring Your Development Environment A Brief History of Image Captioning Models…...
🏷️ #ComputerVision #DeepLearning #ImageCaptioning #MultimodalAI #Tutorial
❤1