AI LAB | Лаборатория ИИ
1.68K subscribers
600 photos
426 videos
23 files
876 links
Лаборатория ИИ
Эксперименты и интересные материалы на тему ИИ в архитектурном проектировании и не только.

По всем вопросам 24/7
@arthiteca

Вопросы сотрудничества и соучастия
@j_fede
加入频道
This media is not supported in your browser
VIEW IN TELEGRAM
Код для обучения модели «подъем-всплеск-съемка» для сегментации автомобилей BEV только с камерой
This media is not supported in your browser
VIEW IN TELEGRAM
StyleGAN2 with adaptive discriminator augmentation (ADA)
Forwarded from Городские данные (Andrey Karmatsky)
Денис Муратаев проанализировал данные Google Street View c помощью компьютерного зрения и оценил качество городской среды в различных городах. Не просто проанализировал, а ещё и подробно описал методику и способ анализа в блоге.

«У каждого человека возникает желание отправиться в маленькое путешествие на выходные, но как выбрать то место куда лучше поехать. Можно посмотреть фотографии, почитать отзывы… А что если использовать компьютерное зрение и провести непредвзятое сравнение городов и уже на основе этого выбрать место поездки.»

https://denis-murataev.medium.com/сравнительный-анализ-городской-среды-с-использованием-компьютерного-зрения-9a50ac099b98
​​NYU Depth V2 — это датасет для сегментации объектов на изображениях интерьера. Датасет состоит из видеопоследовательностей из разных сцен интерьера, которые были записаны в RGB и с помощью камер глубины от Microsoft Kinect.
Portrait generation
This media is not supported in your browser
VIEW IN TELEGRAM
Liquid Warping GAN with Attention: A Unified Framework for Human Image Synthesis
This media is not supported in your browser
VIEW IN TELEGRAM
From Pixels to Legs: Hierarchical Learning of Quadruped Locomotion
Forwarded from Not Boring Tech
This media is not supported in your browser
VIEW IN TELEGRAM
💮 И снова нейронки — почти как всегда, позабавиться. В этот раз «Mask-Guided Discovery of Semantic Manifolds in Generative Models» с помощью StyleGAN2 манипулирует различными областями лица. Посмотрите на зубы и морщины, реализм есть и он очень даже великолепен, но артефакты немного портят впечатление.

📋 В общем, чего это я с "нотациями", вот ссылка покавырять:
github.com/bmolab/masked-gan-manifold
Там же кратко написано о том, как нейросетка работает. Если интересно больше, можете прочесть paper (.pdf).

#Neural_network #Fun | Not Boring Tech
Прогнозирование движения трехмерных тел
This media is not supported in your browser
VIEW IN TELEGRAM
Learned Initializations for Optimizing Coordinate-Based Neural Representations
This media is not supported in your browser
VIEW IN TELEGRAM
Liquid Warping GAN with Attention test on Lansdowne portrait of George Washington
Forwarded from StudyFlex
Майкрософт и "безкодовое" машинное обучения

Искусственный интеллект (ИИ) находится в процессе постоянного совершенствования и оптимизации. Как и человеческий разум, он нуждается в развитии и обучении, чтобы прогрессировать и решать более сложные задачи.

Процесс тренировки ИИ занимает у разработчиков много времени и состоит из нескольких шагов: построение модели, написание кода, отладка, тестирование. Зачастую это может стать краеугольным камнем реализации идей у стартапов, мелкого бизнеса, или просто энтузиастов, которые банально не обладают ресурсами для обучения ИИ.

Идеей популяризации и упрощения использования технологии вдохновился Майкрософт и в 2018 году приобрел и продолжил развивать стартап Lobe.

Lobe — это приложение, которое стремится представить технологически сложные алгоритмы машинного обучения в форме, понятной даже непосвященному пользователю. Проект не требует глубинных знаний в сфере машинного обучения и может разрешить задачи различной сложности: отсортировать фото с отдыха по наличию на них кустарников, определить зверька, который ночью активировал сигнализацию в загородном доме, и многое другое.

Как же выглядит проект на релизе, и что он уже умеет — посмотрим на демо.
Vid2CAD: CAD Model Alignment using Multi-View Constraints from Videos
Full-Glow: Fully conditional Glow for more realistic image generation