Data Science. SQL hub
35.8K subscribers
927 photos
52 videos
37 files
983 links
По всем вопросам- @workakkk

@itchannels_telegram - 🔥лучшие ит-каналы

@ai_machinelearning_big_data - Machine learning

@pythonl - Python

@pythonlbooks- python книги📚

@datascienceiot - ml книги📚

РКН: https://vk.cc/cIi9vo
加入频道
🧠 Как оценивать качество RAG-систем: метрики и MLflow в действии

Retrieval-Augmented Generation (RAG) — мощная архитектура, но её тонко настраивать сложно. Ответы могут казаться "разумными", даже если они на самом деле некорректны. Как понять, работает ли ваша система так, как надо?

В свежем гайде от CodeCut показано, как системно оценивать качество RAG-моделей, а не надеяться на «на глаз»:

🔹 Метрики качества:
- Context Precision / Recall — насколько релевантны и достаточны извлечённые документы
- Faithfulness — насколько ответ действительно основан на контексте, а не «галлюцинирует»
- Answer Relevance — насколько сам ответ полезен и по теме

🔹 Интеграция с MLflow:
Можно логировать не только метрики, но и:
- Извлечённые документы
- Ответы модели
- Ground truth (если есть)
- Скриншоты или HTML-рендеринг всей цепочки

🔹 Автоматическая разметка:
Используется GPT/Claude для автоматического суждения о faithfulness и relevance — удобно при отсутствии human-annotators.


📌 Вывод:
Если вы строите RAG-решения, важно думать не только о качестве retrieval и LLM по отдельности, но и о том, как оценивать весь pipeline.

Метрики + MLflow дают структуру, чтобы сравнивать улучшения и принимать обоснованные решения.


#RAG #MLflow #LLM #Evaluation #AIProduct

@sqlhub
6👍3🔥2
📊 Из PDF в DataFrame за пару строк кода

Работаете с финансовыми отчётами или любыми табличными данными в PDF?
С библиотекой docling это становится максимально просто.

Большинство инструментов для работы с PDF заставляют собирать пайплайн вручную:
одна библиотека для извлечения текста, другая для парсинга, третья для чанкинга.

Docling закрывает весь процесс — от сырых PDF до структурированных и готовых к поиску данных — в одном решении.

📌 Преимущества Docling:
🔹 Поддержка PDF, DOCX, PPTX, HTML и изображений
🔹 AI-модель TableFormer для понимания сложных таблиц
🔹 Vision-модели для OCR и image-to-text
🔹 Простой экспорт в pandas DataFrame, JSON и Markdown

Пример: конвертируем PDF с отчётом о доходах и сразу получаем pandas DataFrame 👇


from docling.document_converter import DocumentConverter

converter = DocumentConverter()
result = converter.convert("financial_report.pdf")

for table in result.document.tables:
df = table.export_to_dataframe()


📌 Github

@sqlhub

#AI #RAG #Docling #DataEngineering #PDF
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2111🔥3😱1