This media is not supported in your browser
VIEW IN TELEGRAM
Данные Global Land Cover Estimation (GLanCE) v1
Global Land Cover Estimation (GLanCE) — ежегодные глобальные данные о растительном покрове и его изменениях с 2001 по 2019 год, полученные с помощью снимков Landsat с пространственным разрешением 30 метров. Данные охватывают весь земной шар, кроме Антарктиды и включает 10 наборов научных данных (Science Data Sets, SDS). Для определения почвенно-растительного покрова и его изменений используется алгоритм Continuous Change Detection and Classification (CCDC).
SDS GLanCE разделены на три категории:
1️⃣ Почвенно-растительный покров и его изменения. Четыре набора данных содержат (1) класс почвенно-растительного покрова, (2) оценку качества классификации почвенно-растительного покрова, (3) предыдущий почвенно-растительный покров для тех мест, где произошли изменения и (4) приблизительный день года, когда произошли изменения (DOY).
2️⃣ Динамика озеленения (Greenness Dynamics). Четыре набора данных характеризуют годовую “озелененность” (greenness) с помощью Enhanced Vegetation Index (EVI2), включая (1) медиану, (2) амплитуду, (3) скорость изменения (если присутствует) и (4) величину изменения медианы EVI2 для тех пикселей, где произошли изменения.
3️⃣ Тип листьев и фенология. Два набора данных определяют тип листьев и фенологию для пикселей, покрытых деревьями.
🌍 GLanCE на GEE
Руководство пользователя с подробной информацией о каждом слое данных: 🔗 ссылка.
❗️В первой версии GLanCE есть 7 из 10 обещанных SDS. Оценка качества классификации почвенно-растительного покрова, а также данные о типах листьях и фенологии будут добавлены в следующих версиях. Кроме того, текущий набор данных включает данные по Северной и Южной Америке, Европе и Океании, а Африка и Азия будут добавлены в начале 2025 года.
Описание методики создания данных:
📖 Friedl M.A. et al. 2022. Medium Spatial Resolution Mapping of Global Land Cover and Land Cover Change Across Multiple Decades From Landsat. Frontiers in Remote Sensing 3. https://doi.org/10.3389/frsen.2022.894571
#данные #GEE #LULC
Global Land Cover Estimation (GLanCE) — ежегодные глобальные данные о растительном покрове и его изменениях с 2001 по 2019 год, полученные с помощью снимков Landsat с пространственным разрешением 30 метров. Данные охватывают весь земной шар, кроме Антарктиды и включает 10 наборов научных данных (Science Data Sets, SDS). Для определения почвенно-растительного покрова и его изменений используется алгоритм Continuous Change Detection and Classification (CCDC).
SDS GLanCE разделены на три категории:
1️⃣ Почвенно-растительный покров и его изменения. Четыре набора данных содержат (1) класс почвенно-растительного покрова, (2) оценку качества классификации почвенно-растительного покрова, (3) предыдущий почвенно-растительный покров для тех мест, где произошли изменения и (4) приблизительный день года, когда произошли изменения (DOY).
2️⃣ Динамика озеленения (Greenness Dynamics). Четыре набора данных характеризуют годовую “озелененность” (greenness) с помощью Enhanced Vegetation Index (EVI2), включая (1) медиану, (2) амплитуду, (3) скорость изменения (если присутствует) и (4) величину изменения медианы EVI2 для тех пикселей, где произошли изменения.
3️⃣ Тип листьев и фенология. Два набора данных определяют тип листьев и фенологию для пикселей, покрытых деревьями.
🌍 GLanCE на GEE
Руководство пользователя с подробной информацией о каждом слое данных: 🔗 ссылка.
❗️В первой версии GLanCE есть 7 из 10 обещанных SDS. Оценка качества классификации почвенно-растительного покрова, а также данные о типах листьях и фенологии будут добавлены в следующих версиях. Кроме того, текущий набор данных включает данные по Северной и Южной Америке, Европе и Океании, а Африка и Азия будут добавлены в начале 2025 года.
Описание методики создания данных:
📖 Friedl M.A. et al. 2022. Medium Spatial Resolution Mapping of Global Land Cover and Land Cover Change Across Multiple Decades From Landsat. Frontiers in Remote Sensing 3. https://doi.org/10.3389/frsen.2022.894571
#данные #GEE #LULC
На Камчатке продолжается извержение вулкана Шивелуч
Пароксизмальное извержение вулкана произошло 7 ноября 2024 года в 9:00–9:30 всемирного времени. Максимальная высота пепловых выбросов составила около 15 км над уровнем моря.
Роскосмос показал замечательные снимки, сделанные 7 ноября спутниками “Арктика-М” и “Метеор-М”.
📸 На снимке, сделанном 7 ноября прибором OLCI спутника Sentinel-3 (естественные цвета), облако пепла относит к востоку.
🖥 Код примера
Следить за извержением вулкана удобно на тг-канале Камчатский филиал ФИЦ ЕГС РАН, а также на NASA Worldview.
#снимки #вулкан #sentinel3 #GEE
Пароксизмальное извержение вулкана произошло 7 ноября 2024 года в 9:00–9:30 всемирного времени. Максимальная высота пепловых выбросов составила около 15 км над уровнем моря.
Роскосмос показал замечательные снимки, сделанные 7 ноября спутниками “Арктика-М” и “Метеор-М”.
📸 На снимке, сделанном 7 ноября прибором OLCI спутника Sentinel-3 (естественные цвета), облако пепла относит к востоку.
🖥 Код примера
Следить за извержением вулкана удобно на тг-канале Камчатский филиал ФИЦ ЕГС РАН, а также на NASA Worldview.
#снимки #вулкан #sentinel3 #GEE
This media is not supported in your browser
VIEW IN TELEGRAM
Дамбы возвращаются
1️⃣ О GlobalDamWatch.org — глобальных данных о расположении плотин написано 🔗здесь. Теперь эти данные появились на Google Earth Engine.
🌍 Данные Global Dam Watch (GDW) v1.0 — это глобальные данные о расположении речных плотин и соответствующих водохранилищ. Данные состоят из двух слоев: 1) координат плотин и 2) полигонов границ водохранилищ. Каждый слой имеет атрибуты, среди которых есть идентификатор пары плотина-водохранилище. Кроме того, координаты дамбы находятся внутри полигона “своего” водохранилища.
Версия 1.0 включает 41 145 точек расположения плотин и 35 295 полигонов водохранилищ. 5 850 плотин не связано с водохранилищами. К ним относятся навигационные шлюзы, отводные заграждения, противопаводковые накопительные плотины, строящиеся плотины без заполненных водохранилищ и т. п.
📖 О методике создания базы данных GDW v1.0
2️⃣ Global Dam Tracker (GDAT) — одна из наиболее полных баз данных по плотинам с географической привязкой, включающая более 35 000 плотин по всему миру. Она содержит координаты, спутниковые данные о водосборных площадях и подробную информацию о таких атрибутах, как год завершения строительства, высота, длина, назначение и установленная мощность (capacity) плотины.
GDAT создана на основе существующих глобальных наборов данных и дополнена региональными данными от правительств, некоммерческих организаций и академических источников, особенно в странах Глобального Юга, где детальные данные часто отсутствуют. Данные охватывают плотины, построенные за последние три десятилетия.
📖 Статья с описанием
🛢 Репозиторий на Zenodo
🌍 GDAT на GEE
#данные #GEE
1️⃣ О GlobalDamWatch.org — глобальных данных о расположении плотин написано 🔗здесь. Теперь эти данные появились на Google Earth Engine.
🌍 Данные Global Dam Watch (GDW) v1.0 — это глобальные данные о расположении речных плотин и соответствующих водохранилищ. Данные состоят из двух слоев: 1) координат плотин и 2) полигонов границ водохранилищ. Каждый слой имеет атрибуты, среди которых есть идентификатор пары плотина-водохранилище. Кроме того, координаты дамбы находятся внутри полигона “своего” водохранилища.
Версия 1.0 включает 41 145 точек расположения плотин и 35 295 полигонов водохранилищ. 5 850 плотин не связано с водохранилищами. К ним относятся навигационные шлюзы, отводные заграждения, противопаводковые накопительные плотины, строящиеся плотины без заполненных водохранилищ и т. п.
📖 О методике создания базы данных GDW v1.0
2️⃣ Global Dam Tracker (GDAT) — одна из наиболее полных баз данных по плотинам с географической привязкой, включающая более 35 000 плотин по всему миру. Она содержит координаты, спутниковые данные о водосборных площадях и подробную информацию о таких атрибутах, как год завершения строительства, высота, длина, назначение и установленная мощность (capacity) плотины.
GDAT создана на основе существующих глобальных наборов данных и дополнена региональными данными от правительств, некоммерческих организаций и академических источников, особенно в странах Глобального Юга, где детальные данные часто отсутствуют. Данные охватывают плотины, построенные за последние три десятилетия.
📖 Статья с описанием
🛢 Репозиторий на Zenodo
🌍 GDAT на GEE
#данные #GEE
This media is not supported in your browser
VIEW IN TELEGRAM
Ежегодная национальная база данных почвенно-растительного покрова США (Annual National Land Cover Dataset) появилась на Earth Engine:
🗺 Annual NLCD Land Cover Dataset
В GEE сохранена исходная структура данных: шесть слоев ежегодных растровых данных о почвенно-растительном покрове и его изменениях для континентальной части США за 1985–2023 гг. с пространственным разрешением 30 м.
Слои данных:
🔹 Land Cover
🔹 Land Cover Change
🔹 Land Cover Confidence
🔹 Fractional Impervious Surface: доля непроницаемых поверхностей (0–100%) в 30-метровом пикселе. Позволяет классифицировать городскую застройку и пригороды на основе заданных пороговых значений.
🔹 Impervious Descriptor: различает городские, негородские и дорожные покрытия на застроенных территориях.
🔹 Spectral Change Day of Year: определяют сутки, когда происходят значительные спектральные изменения (значения 1–366), что позволяет выявить нарушения (например, пожары), выходящие за рамки сезонных колебаний.
#GEE #данные #США
🗺 Annual NLCD Land Cover Dataset
В GEE сохранена исходная структура данных: шесть слоев ежегодных растровых данных о почвенно-растительном покрове и его изменениях для континентальной части США за 1985–2023 гг. с пространственным разрешением 30 м.
Слои данных:
🔹 Land Cover
🔹 Land Cover Change
🔹 Land Cover Confidence
🔹 Fractional Impervious Surface: доля непроницаемых поверхностей (0–100%) в 30-метровом пикселе. Позволяет классифицировать городскую застройку и пригороды на основе заданных пороговых значений.
🔹 Impervious Descriptor: различает городские, негородские и дорожные покрытия на застроенных территориях.
🔹 Spectral Change Day of Year: определяют сутки, когда происходят значительные спектральные изменения (значения 1–366), что позволяет выявить нарушения (например, пожары), выходящие за рамки сезонных колебаний.
#GEE #данные #США
Классификация сельскохозяйственных культур Канады: карты и набор данных
Canada AAFC* Annual Crop Inventory (2009–2023) — ежегодные карты классификации сельскохозяйственных культур (и не только) Канады с общей точностью не менее 85% и пространственным разрешением 30 м (в 2009 и 2010 годах — 56 м).
🌍 Данные на Earth Engine
🔗 Код примера
*AAFC — Agriculture and Agri-Food Canada
Набор данных о пахотных землях Канады с метками, полученными из Canadian Annual Crop Inventory. Данные содержат 78 536 вручную проверенных изображений высокого разрешения (10 м/пиксель, 640 x 640 м) с географической привязкой из 10 классов сельскохозяйственных культур, собранных за четыре года производства (2017–2020) и пять месяцев (июнь-октябрь). Каждый экземпляр содержит 12 спектральных каналов, RGB-изображение и дополнительные каналы вегетационных индексов. По отдельности каждая категория содержит не менее 4 800 изображений. Открыт доступ к модели и исходному коду, которые дают возможность пользователю предсказать класс культуры по одному изображению (ResNet, DenseNet, EfficientNet) или по последовательности изображений (LRCN, 3D-CNN).
📖 Описание методики
🖥 Репозиторий проекта
#данные #датасет #GEE #сельхоз #нейронки
Canada AAFC* Annual Crop Inventory (2009–2023) — ежегодные карты классификации сельскохозяйственных культур (и не только) Канады с общей точностью не менее 85% и пространственным разрешением 30 м (в 2009 и 2010 годах — 56 м).
🌍 Данные на Earth Engine
🔗 Код примера
*AAFC — Agriculture and Agri-Food Canada
Набор данных о пахотных землях Канады с метками, полученными из Canadian Annual Crop Inventory. Данные содержат 78 536 вручную проверенных изображений высокого разрешения (10 м/пиксель, 640 x 640 м) с географической привязкой из 10 классов сельскохозяйственных культур, собранных за четыре года производства (2017–2020) и пять месяцев (июнь-октябрь). Каждый экземпляр содержит 12 спектральных каналов, RGB-изображение и дополнительные каналы вегетационных индексов. По отдельности каждая категория содержит не менее 4 800 изображений. Открыт доступ к модели и исходному коду, которые дают возможность пользователю предсказать класс культуры по одному изображению (ResNet, DenseNet, EfficientNet) или по последовательности изображений (LRCN, 3D-CNN).
📖 Описание методики
🖥 Репозиторий проекта
#данные #датасет #GEE #сельхоз #нейронки
Список всех данных Google Earth Engine
🖥 В репозитории Earth-Engine-Catalog собран список всех пространственных данных, хранящихся Earth Engine. Список представлен в виде файлов TSV (значения, разделенные табуляцией) или JSON. Обновляется ежедневно.
Учитываются только данные из официального каталога Earth Engine:
📚 Каталог пространственных данных Google Earth Engine
Напомним, что существует еще 🖥 Awesome-gee-community-catalog (https://gee-community-catalog.org/), данные в который добавляются сообществом пользователей Earth Engine.
#данные #GEE
🖥 В репозитории Earth-Engine-Catalog собран список всех пространственных данных, хранящихся Earth Engine. Список представлен в виде файлов TSV (значения, разделенные табуляцией) или JSON. Обновляется ежедневно.
Учитываются только данные из официального каталога Earth Engine:
📚 Каталог пространственных данных Google Earth Engine
Напомним, что существует еще 🖥 Awesome-gee-community-catalog (https://gee-community-catalog.org/), данные в который добавляются сообществом пользователей Earth Engine.
#данные #GEE
GitHub
GitHub - opengeos/Earth-Engine-Catalog: The Google Earth Engine data catalog in CSV format
The Google Earth Engine data catalog in CSV format - opengeos/Earth-Engine-Catalog
Фильтрация и классификация в Earth Engine
В статье есть два любопытных примера использования Google Earth Engine:
➊ Сглаживание временных рядов NDVI с помощью фильтра Савицкого-Голая (Savitzky–Golay)
➋ Классификация полей сельскохозяйственных культур (попиксельная) методом “случайного леса” (random forest)
Фильтр Савицкого-Голая реализован в виде функции библиотеки OpenEarthEngineLibrary, о которой мы еще поговорим.
Мы обычно не используем классификацию в Earth Engine, предпочитая выполнять ее в R по полученным из EE снимкам. Но кому-то приведенный пример может пригодиться.
📸 Исходный временной ряд NDVI (ndvi) и ряд, сглаженный фильтром Савицкого-Голая (ndvi_sg).
#GEE
В статье есть два любопытных примера использования Google Earth Engine:
➊ Сглаживание временных рядов NDVI с помощью фильтра Савицкого-Голая (Savitzky–Golay)
➋ Классификация полей сельскохозяйственных культур (попиксельная) методом “случайного леса” (random forest)
Фильтр Савицкого-Голая реализован в виде функции библиотеки OpenEarthEngineLibrary, о которой мы еще поговорим.
Мы обычно не используем классификацию в Earth Engine, предпочитая выполнять ее в R по полученным из EE снимкам. Но кому-то приведенный пример может пригодиться.
📸 Исходный временной ряд NDVI (ndvi) и ряд, сглаженный фильтром Савицкого-Голая (ndvi_sg).
#GEE
Open Earth Engine Library (OEEL) — коллекция полезных функций для Google Earth Engine (GEE).
Для использования OEEL с GEE JavaScript API достаточно импортировать ее код
а затем использовать нужные функции.
По мере роста библиотеки время загрузки также увеличивается. Чтобы решить эту проблему, разработчики предлагают версию библиотеки с быстрой загрузкой
Отметим, что эта версия не должна использоваться для отладки.
Чтобы получить информацию о функциях, добавьте в конец кода следующую строку
Вы получите список всех использованных функций и другую связанную с ними информацию.
OEEL существует в виде Python-пакета.
Установка:
Импорт:
🖥 Репозиторий кода OEEL
🖥 Код примеров
#GEE #python
Для использования OEEL с GEE JavaScript API достаточно импортировать ее код
var oeel=require('users/OEEL/lib:loadAll')
а затем использовать нужные функции.
По мере роста библиотеки время загрузки также увеличивается. Чтобы решить эту проблему, разработчики предлагают версию библиотеки с быстрой загрузкой
var oeel=require('users/OEEL/lib:loadAllSF')
Отметим, что эта версия не должна использоваться для отладки.
Чтобы получить информацию о функциях, добавьте в конец кода следующую строку
print('List of functions used',oeel.refs())
Вы получите список всех использованных функций и другую связанную с ними информацию.
OEEL существует в виде Python-пакета.
Установка:
pip install oeel
Импорт:
from oeel import oeel
🖥 Репозиторий кода OEEL
🖥 Код примеров
#GEE #python
Open Earth Engine Library (продолжение)
OEEL насчитывает десятки функций. Вот некоторые из них, относящиеся к объектам Image, ImageCollection, Feature и FeatureCollection:
🌍 Image
•
•
•
•
•
🌍 ImageCollection
•
•
•
•
•
•
🌍 Feature
•
🌍 FeatureCollection
•
#GEE #python
OEEL насчитывает десятки функций. Вот некоторые из них, относящиеся к объектам Image, ImageCollection, Feature и FeatureCollection:
🌍 Image
•
arrayDTW
— возвращает DTW (dynamic time warping) bмежду двумя изображениями, для каждого пикселя•
inverseDistanceInterpolation
— пространственная интерполяция методом IDW (inverse distance weighting)•
kriging
— пространственная интерполяция с помощью кригинга•
propertyAsBand
— создает новый слой (канал) изображения из свойств этого изображения•
semivariogram
— вычисляет семивариограмму🌍 ImageCollection
•
OtsuThreshold
— рассчитывает порог Оцу (Otsu) для коллекции•
SavatskyGolayFilter
— фильтрация снимков коллекции фильтром Савицкого-Голая (Savitsky-Golay). В названии функции содержится ошибка)•
enhancingCollection
— алгоритм, расширяющий коллекцию, добавляя к ней новую коллекцию. Каждое изображение первой коллекции сливается с изображением второй коллекции•
fromSingleImage
— загрузка изображения как коллекции•
medoid
— вычисляет медоид коллекции•
movingWindow
— фильтрация коллекции методом “скользящего окна”🌍 Feature
•
asLabel
— генерирует функцию, преобразующую Feature в аннотацию на изображении🌍 FeatureCollection
•
fromList
— преобразует List в FeatureCollection#GEE #python
Фильтр Савицкого-Голая для коллекции MODIS
Фильтр Савицкого-Голая (Savitzky-Golay) без использования внешних библиотек в Google Earth Engine, реализованный Гвидо Лемуаном (Guido Lemoine). Код можно взять здесь или здесь.
#GEE
Фильтр Савицкого-Голая (Savitzky-Golay) без использования внешних библиотек в Google Earth Engine, реализованный Гвидо Лемуаном (Guido Lemoine). Код можно взять здесь или здесь.
#GEE