Спутники на сверхнизких орбитах
Сверхнизкие околоземные орбиты (Very Low Earth Orbit, VLEO) — это орбиты, лежащие ниже орбиты МКС (около 400 км). Сопротивление атмосферы на них гораздо выше, чем на традиционных орбитах спутников ДЗЗ (500–700 км), а значит время существования спутников будет гораздо меньшим. Но есть у VLEO и множество плюсов.
* Уменьшение высоты полета спутника с 650 до 160 км приводит к 64-кратному снижению мощности радара, 16-кратному снижению мощности антенны связи и 4-кратному уменьшению оптической апертуры для достижения того же разрешения съемки. Грубо говоря, можно создать маленький спутник с возможностями как у большого.
* Считается, что VLEO-спутники позволят производить фотосъемку поверхности Земли с разрешением 10 см на пиксель.
* Выводить спутники на VLEO дешевле, а значит сократятся затраты на запуск. Требования к носителю будут ниже, а работы по запуску ракет с неподготовленных площадок уже ведутся.
* Сопротивление атмосферы будет очищать VLEO от космического мусора.
Вырисовывается новый тип космических платформ, которые будут маленькими, относительно дешевыми, а по пространственному разрешению смогут конкурировать с дронами.
Что есть сейчас? Европейская миссия GOCE (255 км, 4.5 года) и японская SLATS (200 км, почти 2 года). Вполне успешные, но большие и дорогие.
В настоящий момент успешными хотят стать американские стартапы Skeyeon, Albedo и Earth Observant, а также европейский гигант Thales Alenia Space. Все они хотят только хорошего: охранять природу, поддерживать сельское хозяйство и обеспечивать устойчивое развитие. Правда, Earth Observant собирается делать это на деньги ВВС США, но так тоже бывает.
У GOCE и SLATS высота орбиты поддерживалась ионным двигателем на ксеноне. Как будут решаться проблемы поддержания орбиты сейчас — пока не известно. Но стартапы что-то знают. Первые пуски на VLEO намечены: на 2023 год у Earth Observant и на 2024 год у Albedo. Будем следить за развитием событий.
Впрочем, есть заказчики, которые понимают окупаемость по-своему. Earth Observant как бы намекает. Напомним, что орбиты разведывательных спутников CORONA лежали ниже 160 км.
Если спутникам на VLEO не будет хватать энергии, ее можно попробовать получить от солнечных электростанций (СЭС), которые разрабатывают для тех же людей. Демонстратор СЭС обещают запустить уже в 2025 г.
#VLEO #keyhole
Сверхнизкие околоземные орбиты (Very Low Earth Orbit, VLEO) — это орбиты, лежащие ниже орбиты МКС (около 400 км). Сопротивление атмосферы на них гораздо выше, чем на традиционных орбитах спутников ДЗЗ (500–700 км), а значит время существования спутников будет гораздо меньшим. Но есть у VLEO и множество плюсов.
* Уменьшение высоты полета спутника с 650 до 160 км приводит к 64-кратному снижению мощности радара, 16-кратному снижению мощности антенны связи и 4-кратному уменьшению оптической апертуры для достижения того же разрешения съемки. Грубо говоря, можно создать маленький спутник с возможностями как у большого.
* Считается, что VLEO-спутники позволят производить фотосъемку поверхности Земли с разрешением 10 см на пиксель.
* Выводить спутники на VLEO дешевле, а значит сократятся затраты на запуск. Требования к носителю будут ниже, а работы по запуску ракет с неподготовленных площадок уже ведутся.
* Сопротивление атмосферы будет очищать VLEO от космического мусора.
Вырисовывается новый тип космических платформ, которые будут маленькими, относительно дешевыми, а по пространственному разрешению смогут конкурировать с дронами.
Что есть сейчас? Европейская миссия GOCE (255 км, 4.5 года) и японская SLATS (200 км, почти 2 года). Вполне успешные, но большие и дорогие.
В настоящий момент успешными хотят стать американские стартапы Skeyeon, Albedo и Earth Observant, а также европейский гигант Thales Alenia Space. Все они хотят только хорошего: охранять природу, поддерживать сельское хозяйство и обеспечивать устойчивое развитие. Правда, Earth Observant собирается делать это на деньги ВВС США, но так тоже бывает.
У GOCE и SLATS высота орбиты поддерживалась ионным двигателем на ксеноне. Как будут решаться проблемы поддержания орбиты сейчас — пока не известно. Но стартапы что-то знают. Первые пуски на VLEO намечены: на 2023 год у Earth Observant и на 2024 год у Albedo. Будем следить за развитием событий.
Впрочем, есть заказчики, которые понимают окупаемость по-своему. Earth Observant как бы намекает. Напомним, что орбиты разведывательных спутников CORONA лежали ниже 160 км.
Если спутникам на VLEO не будет хватать энергии, ее можно попробовать получить от солнечных электростанций (СЭС), которые разрабатывают для тех же людей. Демонстратор СЭС обещают запустить уже в 2025 г.
#VLEO #keyhole
Albedo расширяет штат и создает собственное производство спутников
Стартап Albedo, планирующий создать группировку спутников дистанционного зондирования на сверхнизкой околоземной орбите, расширяет штат и строит собственное производство в Колорадо.
Благодаря использованию низкой околоземной орбиты, Albedo планирует получать снимки в видимом диапазоне с разрешением 10 сантиметров на пиксель и тепловые инфракрасные снимки с разрешением 2 метра на пиксель. Чтобы повысить разрешение тепловых снимков, предполагается объединять их со снимками в видимом диапазоне*.
Компания Albedo, основанная в 2020 году, в 2022 году привлекла 48 млн долларов инвестиций, а также выиграла два контракта Small Business Innovation Research стоимостью 1.25 млн долларов каждый. Впечатляет состав стратегического консультативного совета компании, куда входят бывший директор ЦРУ Джон Дейч и бывший директор NGA вице-адмирал Роберт Шарп.
Albedo собирается запустить свой первый спутник в 2025 году, а на следующий год полностью развернуть группировку из 6 спутников, которая должна обеспечить суточную периодичность съемки.
За счет чего Albedo собирается поддерживать работоспособность группировки на сверхнизкой орбите — пока неясно. Впрочем, есть такой класс спутников, которым не обязательно находится на орбите долго, если призом является сверхвысокое разрешение. Желающие могут ознакомится с орбитами и сроками существования спутников Key Hole. А ведь это были аппараты с массами в несколько тонн.
*вероятно, речь идет о разновидности статистического даунскейлинга (downscaling). Такие операции, в частности, проделывают с данными Landsat TIRS, чтобы повысить их разрешение до разрешения данных Landsat OLI, то есть со 100 метров до 30 метров.
#война #VLEO
Стартап Albedo, планирующий создать группировку спутников дистанционного зондирования на сверхнизкой околоземной орбите, расширяет штат и строит собственное производство в Колорадо.
Благодаря использованию низкой околоземной орбиты, Albedo планирует получать снимки в видимом диапазоне с разрешением 10 сантиметров на пиксель и тепловые инфракрасные снимки с разрешением 2 метра на пиксель. Чтобы повысить разрешение тепловых снимков, предполагается объединять их со снимками в видимом диапазоне*.
Компания Albedo, основанная в 2020 году, в 2022 году привлекла 48 млн долларов инвестиций, а также выиграла два контракта Small Business Innovation Research стоимостью 1.25 млн долларов каждый. Впечатляет состав стратегического консультативного совета компании, куда входят бывший директор ЦРУ Джон Дейч и бывший директор NGA вице-адмирал Роберт Шарп.
Albedo собирается запустить свой первый спутник в 2025 году, а на следующий год полностью развернуть группировку из 6 спутников, которая должна обеспечить суточную периодичность съемки.
За счет чего Albedo собирается поддерживать работоспособность группировки на сверхнизкой орбите — пока неясно. Впрочем, есть такой класс спутников, которым не обязательно находится на орбите долго, если призом является сверхвысокое разрешение. Желающие могут ознакомится с орбитами и сроками существования спутников Key Hole. А ведь это были аппараты с массами в несколько тонн.
*вероятно, речь идет о разновидности статистического даунскейлинга (downscaling). Такие операции, в частности, проделывают с данными Landsat TIRS, чтобы повысить их разрешение до разрешения данных Landsat OLI, то есть со 100 метров до 30 метров.
#война #VLEO
Российский проект освоения сверхнизких околоземных орбит
30 июня на встрече Владимира Путина с главой “Роскосмоса” Юрием Борисовым обсуждалась тема сверхнизких околоземных орбит.
Незадолго до этого, на форуме Агентства стратегических инициатив (АСИ), президенту был представлен проект освоения сверхнизких околоземных орбит высотой до 200 километров. Одной из проблем в этом направлении являются трудности поддержания таких орбит: остатки атмосферы слишком быстро “садят” спутник. Авторы проекта разработали ионный двигатель открытого типа, работа которого обеспечивается именно за счет использования остатков атмосферы. Лабораторный макет двигателя создан и испытан в 2022 году.
Далее, процитируем Asi.Ru: “Лидер проекта попросил президента поручить “Роскосмосу” завершить совместные испытания, изготовить пять опытных спутников и провести их летные испытания. Также он попросил главу государства поручить правительству России сформировать отдельную программу освоения низкого космоса до 200 км и предусмотреть финансирование на ее реализацию. Владимир Путин пообещал оказать поддержку проекту и обсудить его с главой “Роскосмоса” Юрием Борисовым”.
#VLEO
30 июня на встрече Владимира Путина с главой “Роскосмоса” Юрием Борисовым обсуждалась тема сверхнизких околоземных орбит.
Незадолго до этого, на форуме Агентства стратегических инициатив (АСИ), президенту был представлен проект освоения сверхнизких околоземных орбит высотой до 200 километров. Одной из проблем в этом направлении являются трудности поддержания таких орбит: остатки атмосферы слишком быстро “садят” спутник. Авторы проекта разработали ионный двигатель открытого типа, работа которого обеспечивается именно за счет использования остатков атмосферы. Лабораторный макет двигателя создан и испытан в 2022 году.
Далее, процитируем Asi.Ru: “Лидер проекта попросил президента поручить “Роскосмосу” завершить совместные испытания, изготовить пять опытных спутников и провести их летные испытания. Также он попросил главу государства поручить правительству России сформировать отдельную программу освоения низкого космоса до 200 км и предусмотреть финансирование на ее реализацию. Владимир Путин пообещал оказать поддержку проекту и обсудить его с главой “Роскосмоса” Юрием Борисовым”.
#VLEO
В России разрабатывают двигатель для работы космических аппаратов на сверхнизких околоземных орбитах
Ученые из Московского авиационного института (МАИ) и Московского государственного университета (МГУ) ведут работу над созданием двигательной установки для космических аппаратов, предназначенных для работы на сверхнизких околоземных орбитах высотой около 200 км. Двигатель будет создавать тягу, используя атмосферные газы — азот и кислород, которые еще сохраняются на данной высоте. Продолжительность работы такой установки, в отличие от традиционных, не ограничена запасом топлива. Ее применение позволит снизить размеры и стоимость спутников для таких высот, а также уменьшить затраты на их выведение в космос.
Сверхнизкие околоземные орбиты (Very Low Earth Orbit, VLEO) — это орбиты, лежащие ниже орбиты МКС (около 400 км). Использование таких орбит дает множество преимуществ. Для дистанционного зондирования это позволит получать снимки более высокого разрешения при тех же характеристиках съемочной аппаратуры, что и у современных спутников, находящихся на более высоких орбитах (400–700 км).
Проблема в том, что остатки атмосферы на сверхнизких орбитах создают значительное сопротивление движению спутника, быстро снижающее высоту его орбиты. Поддержать ее может двигательная установка, но современные двигатели требует слишком большого запаса топлива, что сводит на нет преимущества от использования сверхнизких орбит. Нужен новый, более экономичный двигатель. Эту задачу и решают специалисты из МАИ и МГУ. Они предполагают, что разработка может быть доведена до стадии опытного образца в течение 5–7 лет.
Отметим, что в России существует еще один проект двигателя для сверхнизких околоземных орбит, работа на которым ведется в настоящее время.
#VLEO
Ученые из Московского авиационного института (МАИ) и Московского государственного университета (МГУ) ведут работу над созданием двигательной установки для космических аппаратов, предназначенных для работы на сверхнизких околоземных орбитах высотой около 200 км. Двигатель будет создавать тягу, используя атмосферные газы — азот и кислород, которые еще сохраняются на данной высоте. Продолжительность работы такой установки, в отличие от традиционных, не ограничена запасом топлива. Ее применение позволит снизить размеры и стоимость спутников для таких высот, а также уменьшить затраты на их выведение в космос.
Сверхнизкие околоземные орбиты (Very Low Earth Orbit, VLEO) — это орбиты, лежащие ниже орбиты МКС (около 400 км). Использование таких орбит дает множество преимуществ. Для дистанционного зондирования это позволит получать снимки более высокого разрешения при тех же характеристиках съемочной аппаратуры, что и у современных спутников, находящихся на более высоких орбитах (400–700 км).
Проблема в том, что остатки атмосферы на сверхнизких орбитах создают значительное сопротивление движению спутника, быстро снижающее высоту его орбиты. Поддержать ее может двигательная установка, но современные двигатели требует слишком большого запаса топлива, что сводит на нет преимущества от использования сверхнизких орбит. Нужен новый, более экономичный двигатель. Эту задачу и решают специалисты из МАИ и МГУ. Они предполагают, что разработка может быть доведена до стадии опытного образца в течение 5–7 лет.
Отметим, что в России существует еще один проект двигателя для сверхнизких околоземных орбит, работа на которым ведется в настоящее время.
#VLEO
Развитие российского проекта освоения сверхнизких околоземных орбит
Новость, касающаяся проекта освоения сверхнизких околоземных орбит. Президент РФ Владимир Путин поручил Роскосмосу и Агентству стратегических инициатив (АСИ):
а) рассмотреть вопрос о создании космических аппаратов, функционирующих на предельно низких орбитах (до 200 км), и изготовлении опытных образцов таких аппаратов для проведения испытаний;
б) по результатам реализации подпункта «а» настоящего пункта определить целесообразность формирования отдельной программы по освоению предельно низких орбит, оценив необходимый объем и источники ее финансирования.
Доклад – до 1 декабря 2023 г.
Ответственными указаны глава Роскосмоса Юрий Борисов и гендиректор АСИ Светлана Чупшева.
#VLEO
Новость, касающаяся проекта освоения сверхнизких околоземных орбит. Президент РФ Владимир Путин поручил Роскосмосу и Агентству стратегических инициатив (АСИ):
а) рассмотреть вопрос о создании космических аппаратов, функционирующих на предельно низких орбитах (до 200 км), и изготовлении опытных образцов таких аппаратов для проведения испытаний;
б) по результатам реализации подпункта «а» настоящего пункта определить целесообразность формирования отдельной программы по освоению предельно низких орбит, оценив необходимый объем и источники ее финансирования.
Доклад – до 1 декабря 2023 г.
Ответственными указаны глава Роскосмоса Юрий Борисов и гендиректор АСИ Светлана Чупшева.
#VLEO
Коротко о некоторых событиях недели в области ДЗЗ.
Американский стартап Albedo привлек 35 млн долларов на создание и запуск своего первого спутника наблюдения Земли со сверхнизкой орбиты (#VLEO) [ссылка]
Инвестиционный раунд серии А-1, возглавляемый компанией Standard Investments, довел общий объем финансирования стартапа до 97 млн долларов.
Венчурное подразделение компании Booz Allen, известной своей работой с правительством и вооруженными силами США, выбрало Albedo в качестве своей первой инвестиции в космическую компанию из-за его потенциала качественно изменить сбор разведывательной информации.
Цель Albedo — получать снимки с самым высоким разрешением на рынке: 10 см в оптическом и 2 м в тепловом инфракрасном диапазоне (подробнее).
Готовясь к запуску своего первого спутника в 2025 году, Albedo расширила штат сотрудников и открыла предприятие в Брумфилде (шт. Колорадо), позволяющее одновременно создавать три или четыре спутника.
Ранее, запуск первого спутника Albedo планировался в нынешнем году.
Synspective старается расширить свое присутствие на рынке ДЗЗ Центральной Азии [ссылка]
Японская компания Synspective, поставщик спутниковых радарных данных и аналитических решений, заключила меморандумы о взаимопонимании с Центром космического мониторинга и геоинформационных технологий Узбекистана, Национальным космическим агентством Казахстана и компанией "Казахстан Гарыш Сапары".
Новые спутники для мониторинга выбросов парниковых газов
За два последних года возможности мониторинга выбросов парниковых газов увеличились, благодаря появлению канадской орбитальной группировки GHGSat, состоящей в данный момент из 12 спутников.
Компания Ball Aerospace разработала высокопроизводительный спектрометр для спутника MethaneSAT (параметры). Запуск спутника запланирован на 2024 год.
Capella Space и Floodbase используют радарные данные высокого разрешения для оценки масштабов наводнения [ссылка]
Спутниковые радарные данные высокого разрешения, поставляемые Capella Space, будут применяться в комплексном решении Floodbase для параметрического (индексного) страхования от наводнений. Радарные данные, слабо зависящие от облачности, позволят максимально оперативно оценить масштабы бедствия.
Copernicus Land Monitoring Service подписала новый контракт на создание Urban Atlas [ссылка]
Copernicus Land Monitoring Service обновит слои данных Urban Atlas за 2021 и 2024 годы. Теперь обновление информации о городском землепользовании будет происходить каждые три года (раньше — каждые 6 лет).
Контракт разделен на два этапа. Первый включает создание слоев данных о состоянии земного покрова и классах землепользования (Land Cover/Land Use), а также о высоте зданий (Building Block Heights) за 2021 год. Будет создан слой изменений этих данных за 2018–2021 гг. На этом этапе предполагается также создание и тестирование нового слоя — Green Land Use, который позволит пользователям различать общественные и частные зеленые насаждения. Если точность нового слоя окажется удовлетворительной, его будут создавать и для 2024 года. Вторая фаза контракта посвящена обновлению данных на 2024 год.
Вышла новая версия PyGMTSAR — программы обработки данных радарной интерферометрии с открытым исходным кодом [ссылка]
#США #война #япония #capella #вода #InSAR #LULC
Американский стартап Albedo привлек 35 млн долларов на создание и запуск своего первого спутника наблюдения Земли со сверхнизкой орбиты (#VLEO) [ссылка]
Инвестиционный раунд серии А-1, возглавляемый компанией Standard Investments, довел общий объем финансирования стартапа до 97 млн долларов.
Венчурное подразделение компании Booz Allen, известной своей работой с правительством и вооруженными силами США, выбрало Albedo в качестве своей первой инвестиции в космическую компанию из-за его потенциала качественно изменить сбор разведывательной информации.
Цель Albedo — получать снимки с самым высоким разрешением на рынке: 10 см в оптическом и 2 м в тепловом инфракрасном диапазоне (подробнее).
Готовясь к запуску своего первого спутника в 2025 году, Albedo расширила штат сотрудников и открыла предприятие в Брумфилде (шт. Колорадо), позволяющее одновременно создавать три или четыре спутника.
Ранее, запуск первого спутника Albedo планировался в нынешнем году.
Synspective старается расширить свое присутствие на рынке ДЗЗ Центральной Азии [ссылка]
Японская компания Synspective, поставщик спутниковых радарных данных и аналитических решений, заключила меморандумы о взаимопонимании с Центром космического мониторинга и геоинформационных технологий Узбекистана, Национальным космическим агентством Казахстана и компанией "Казахстан Гарыш Сапары".
Новые спутники для мониторинга выбросов парниковых газов
За два последних года возможности мониторинга выбросов парниковых газов увеличились, благодаря появлению канадской орбитальной группировки GHGSat, состоящей в данный момент из 12 спутников.
Компания Ball Aerospace разработала высокопроизводительный спектрометр для спутника MethaneSAT (параметры). Запуск спутника запланирован на 2024 год.
Capella Space и Floodbase используют радарные данные высокого разрешения для оценки масштабов наводнения [ссылка]
Спутниковые радарные данные высокого разрешения, поставляемые Capella Space, будут применяться в комплексном решении Floodbase для параметрического (индексного) страхования от наводнений. Радарные данные, слабо зависящие от облачности, позволят максимально оперативно оценить масштабы бедствия.
Copernicus Land Monitoring Service подписала новый контракт на создание Urban Atlas [ссылка]
Copernicus Land Monitoring Service обновит слои данных Urban Atlas за 2021 и 2024 годы. Теперь обновление информации о городском землепользовании будет происходить каждые три года (раньше — каждые 6 лет).
Контракт разделен на два этапа. Первый включает создание слоев данных о состоянии земного покрова и классах землепользования (Land Cover/Land Use), а также о высоте зданий (Building Block Heights) за 2021 год. Будет создан слой изменений этих данных за 2018–2021 гг. На этом этапе предполагается также создание и тестирование нового слоя — Green Land Use, который позволит пользователям различать общественные и частные зеленые насаждения. Если точность нового слоя окажется удовлетворительной, его будут создавать и для 2024 года. Вторая фаза контракта посвящена обновлению данных на 2024 год.
Вышла новая версия PyGMTSAR — программы обработки данных радарной интерферометрии с открытым исходным кодом [ссылка]
#США #война #япония #capella #вода #InSAR #LULC
⭐️ СТРАНЫ / КОМПАНИИ / СПУТНИКИ
Страны: #австралия #германия #индия #иран #испания #канада #китай #португалия #россия #США #япония и т. п.
Но:
#корея обозначает Северную и Южную Кореи
#РБ — Республика Беларусь
#UK — Великобритания
Компании: #planet #maxar
Спутники: #landsat #sentinel1 #sentinel2
⭐️ ДЗЗ
Методы и приборы
#альтиметр
#гиперспектр — гиперспектральная оптическая съемка
#лидар
#оптика — мультиспектральная оптическая съемка
#радиометр — микроволновой радиометр
#dnb — ночная съёмка (day / night band)
#SIF — солнечно-индуцированная флуоресценция хлорофилла
#ro — радиозатменный метод
#SAR — радарная съемка
#InSAR — радарная интерферометрия
#LST — съемка в тепловом инфракрасном диапазоне
#GNSSR — ГНСС-рефлектометрия
#sigint — радиоэлектронная разведка
Виды орбит: #ГСО — геостационарная, #VLEO — сверхнизкая
#основы — обучающие материалы по ДЗЗ
#обучение курсы, обучающие сервисы и т. п.
#история — в основном, история ДЗЗ
#индексы — спектральные индексы
#комбинация — комбинации каналов
Данные
#данные — коллекции данных ДЗЗ, наземных данных, карты и т.п.
#датасет — набор данных для машинного обучения
Дополнительные хештеги, описывающие данные:
#LULC — Land Use & Land Cover
#осадки
#SST — Sea Surface Temperature
#nrt — (near real time) изображения, получаемые в режиме, близком к реальном времени
#debris — космический мусор
#границы — административные границы
#DEM — цифровая модель рельефа (ЦМР)
#keyhole — рассекреченные снимки разведспутников
Литература, справочная информация
#справка — спектральные каналы, орбиты спутников, поиск данных и т.п.
#обзор
#книга — текст книги прикреплён к сообщению.
#журнал — статьи по ДЗЗ, опубликованные в выпуске журнала
Дополнительные хештеги:
#наблюдение — ресурсы для наблюдения спутников и орбиты спутников
#космодромы
#конференции — анонс конференций/семинаров/школ, посвященных ДЗЗ и анализ их материалов.
#конкурсы — анонс конкурсов/чемпионатов/олимпиад.
#МВК — материалы заседаний Межведомственной комиссии (МВК) по использованию результатов космической деятельности.
#снимки — поучительные (хоть в чем-то интересные) снимки, первые снимки
Программные инструменты / Языки
#нейронки #софт #GEE #R #tool #python #ГИС
#ИИ #FM — Foundation Model (Remote Sensing Foundation Model)
⭐️ ОТРАСЛИ / ТЕМАТИЧЕСКИЕ ЗАДАЧИ
#археология #атмосфера #вода #война #засуха #климат #лед #лес #нефть #океан #оползни #наводнение #пожары #почва #растительность #севморпуть #сельхоз #снег
#AGB — надземная биомасса
#ЧС — мониторинг стихийных бедствий и катастроф
#GHG — парниковые газы
Отдельные газы: #CO2 #NO2
#энергетика — космическая энергетика
#SSA — Space Situational Awareness
Страны: #австралия #германия #индия #иран #испания #канада #китай #португалия #россия #США #япония и т. п.
Но:
#корея обозначает Северную и Южную Кореи
#РБ — Республика Беларусь
#UK — Великобритания
Компании: #planet #maxar
Спутники: #landsat #sentinel1 #sentinel2
⭐️ ДЗЗ
Методы и приборы
#альтиметр
#гиперспектр — гиперспектральная оптическая съемка
#лидар
#оптика — мультиспектральная оптическая съемка
#радиометр — микроволновой радиометр
#dnb — ночная съёмка (day / night band)
#SIF — солнечно-индуцированная флуоресценция хлорофилла
#ro — радиозатменный метод
#SAR — радарная съемка
#InSAR — радарная интерферометрия
#LST — съемка в тепловом инфракрасном диапазоне
#GNSSR — ГНСС-рефлектометрия
#sigint — радиоэлектронная разведка
Виды орбит: #ГСО — геостационарная, #VLEO — сверхнизкая
#основы — обучающие материалы по ДЗЗ
#обучение курсы, обучающие сервисы и т. п.
#история — в основном, история ДЗЗ
#индексы — спектральные индексы
#комбинация — комбинации каналов
Данные
#данные — коллекции данных ДЗЗ, наземных данных, карты и т.п.
#датасет — набор данных для машинного обучения
Дополнительные хештеги, описывающие данные:
#LULC — Land Use & Land Cover
#осадки
#SST — Sea Surface Temperature
#nrt — (near real time) изображения, получаемые в режиме, близком к реальном времени
#debris — космический мусор
#границы — административные границы
#DEM — цифровая модель рельефа (ЦМР)
#keyhole — рассекреченные снимки разведспутников
Литература, справочная информация
#справка — спектральные каналы, орбиты спутников, поиск данных и т.п.
#обзор
#книга — текст книги прикреплён к сообщению.
#журнал — статьи по ДЗЗ, опубликованные в выпуске журнала
Дополнительные хештеги:
#наблюдение — ресурсы для наблюдения спутников и орбиты спутников
#космодромы
#конференции — анонс конференций/семинаров/школ, посвященных ДЗЗ и анализ их материалов.
#конкурсы — анонс конкурсов/чемпионатов/олимпиад.
#МВК — материалы заседаний Межведомственной комиссии (МВК) по использованию результатов космической деятельности.
#снимки — поучительные (хоть в чем-то интересные) снимки, первые снимки
Программные инструменты / Языки
#нейронки #софт #GEE #R #tool #python #ГИС
#ИИ #FM — Foundation Model (Remote Sensing Foundation Model)
⭐️ ОТРАСЛИ / ТЕМАТИЧЕСКИЕ ЗАДАЧИ
#археология #атмосфера #вода #война #засуха #климат #лед #лес #нефть #океан #оползни #наводнение #пожары #почва #растительность #севморпуть #сельхоз #снег
#AGB — надземная биомасса
#ЧС — мониторинг стихийных бедствий и катастроф
#GHG — парниковые газы
Отдельные газы: #CO2 #NO2
#энергетика — космическая энергетика
#SSA — Space Situational Awareness
Опубликованная на днях в The New York Times статья When Eyes in the Sky Start Looking Right at You [ссылка] посвящена Albedo Space. Эта американская компания имеет штат из 50 сотрудников и уже привлекла около 100 млн долларов инвестиций. Среди инвесторов — Breakthrough Energy Ventures, инвестиционная компания Билла Гейтса. В стратегический консультативный совет Albedo входят бывшие директора ЦРУ и Национального агентства геопространственной разведки. Теперь вот еще и статья в NYT…
Компания планирует запустить свой первый спутник в начале 2025 года, а полностью развернутая группировка должна состоять из 24 космических аппаратов.
Albedo собирается получать снимки с пространственным разрешением 10 см, размещая свои спутники на сверхнизких околоземных орбитах, высотой ниже 400 км. Для поддержания высоты орбиты будет использоваться реактивный двигатель, информации о котором нет.
#VLEO #война
Компания планирует запустить свой первый спутник в начале 2025 года, а полностью развернутая группировка должна состоять из 24 космических аппаратов.
Albedo собирается получать снимки с пространственным разрешением 10 см, размещая свои спутники на сверхнизких околоземных орбитах, высотой ниже 400 км. Для поддержания высоты орбиты будет использоваться реактивный двигатель, информации о котором нет.
#VLEO #война
NY Times
When Eyes in the Sky Start Looking Right at You
New satellites that orbit the Earth at very low altitudes may result in a world where nothing is really off limits.
В МАИ разработали двигатель для малых спутников на сверхнизких орбитах
Специалисты Научно-исследовательского института прикладной механики и электродинамики (НИИ ПМЭ) МАИ разработали высокочастотный ионный двигатель с электродами из углерод-углеродного композиционного материала. Новый двигатель предполагается использовать для обеспечения работы спутников на сверхнизких околоземных орбитах.
Сверхнизкие околоземные орбиты находятся ниже орбиты МКС (400 км), в диапазоне высот 200–400 км. Использование таких орбит для наблюдения Земли позволит получать снимки более высокого разрешения при тех же характеристиках съёмочной аппаратуры, что и у современных спутников, находящихся на более высоких орбитах (400–700 км).
Проблема в том, что остатки атмосферы на сверхнизких орбитах тормозят космический аппарат, в результате его орбита довольно быстро снижается. Срок активного существования спутников на сверхнизких орбитах колеблется от нескольких дней до нескольких месяцев. Поддержать высоту орбиты может двигательная установка, но современные двигатели требует слишком большого запаса топлива, что сводит на нет преимущества от использования сверхнизких орбит. Нужен новый, более экономичный двигатель.
Эту задачу и решают специалисты из МАИ. Расчётное время разработанной ими двигательной установки составляет 28 тысяч часов (более трёх лет). При этом она обладает достаточной тягой, чтобы парировать сопротивление набегающего потока атмосферных газов.
Предполагается, что двигатель будет работать на ксеноне или криптоне. Специалисты НИИ ПМЭ МАИ выбрали в качестве материала электродов углерод-углеродный композит, благодаря чему удалось добиться устойчивости к эрозии.
О этом проекте мы уже писали. Тогда предполагалось, что двигатель будет создавать тягу, используя атмосферные газы — азот и кислород. Теперь речь идёт о ксеноне или криптоне.
#VLEO #россия
Специалисты Научно-исследовательского института прикладной механики и электродинамики (НИИ ПМЭ) МАИ разработали высокочастотный ионный двигатель с электродами из углерод-углеродного композиционного материала. Новый двигатель предполагается использовать для обеспечения работы спутников на сверхнизких околоземных орбитах.
Сверхнизкие околоземные орбиты находятся ниже орбиты МКС (400 км), в диапазоне высот 200–400 км. Использование таких орбит для наблюдения Земли позволит получать снимки более высокого разрешения при тех же характеристиках съёмочной аппаратуры, что и у современных спутников, находящихся на более высоких орбитах (400–700 км).
Проблема в том, что остатки атмосферы на сверхнизких орбитах тормозят космический аппарат, в результате его орбита довольно быстро снижается. Срок активного существования спутников на сверхнизких орбитах колеблется от нескольких дней до нескольких месяцев. Поддержать высоту орбиты может двигательная установка, но современные двигатели требует слишком большого запаса топлива, что сводит на нет преимущества от использования сверхнизких орбит. Нужен новый, более экономичный двигатель.
Эту задачу и решают специалисты из МАИ. Расчётное время разработанной ими двигательной установки составляет 28 тысяч часов (более трёх лет). При этом она обладает достаточной тягой, чтобы парировать сопротивление набегающего потока атмосферных газов.
Предполагается, что двигатель будет работать на ксеноне или криптоне. Специалисты НИИ ПМЭ МАИ выбрали в качестве материала электродов углерод-углеродный композит, благодаря чему удалось добиться устойчивости к эрозии.
О этом проекте мы уже писали. Тогда предполагалось, что двигатель будет создавать тягу, используя атмосферные газы — азот и кислород. Теперь речь идёт о ксеноне или криптоне.
#VLEO #россия
Redwire разрабатывает разведывательные спутники для сверхнизких околоземных орбит
Преимущества сверхнизких околоземных орбит, то есть орбит, высотой ниже 400 км, хорошо известны. Такие спутники могут обеспечить более высокое пространственное разрешение съемки (до 10 см), по сравнению с аппаратами, находящимися на традиционных для ДЗЗ орбитах (400–700 км), а их запуск обойдётся дешевле.
Американская компания Redwire разрабатывает спутниковую платформу SabreSat для работы на сверхнизких орбитах. В качестве основного заказчика компания рассматривает правительственные организации США.
По словам исполнительного вице-президента Redwire по вопросам национальной безопасности Дина Беллами, полеты на высотах выше беспилотных летательных аппаратов и ниже разросшихся низкоорбитальных спутниковых группировок повышают устойчивость системы наблюдения Земли. Если противоспутниковое оружие поразит цели на традиционных низких орбитах, то спутники на сверхнизких орбитах могут уцелеть.
Масса платформы SabreSat с полезной нагрузкой оставляет около 200 кг. При необходимости SabreSat можно наращивать в длину с помощью дополнительных модулей, а также увеличивать площадь солнечных батарей.
Основной проблемой освоения сверхнизких орбит является то, что их трудно поддерживать: остатки атмосферы слишком быстро снижают высоту орбиты спутника. Для поддержания высоты орбиты Redwire использует электрический ракетный двигатель. “В зависимости от продолжительности миссии мы можем зачерпнуть атомарный кислород и азот, чтобы использовать их в наших электрических двигателях”, — сообщил Спенс Уайз, старший вице-президент Redwire по миссиям и платформам.
Помимо SabreSat, Redwire разрабатывает ещё одну спутниковую платформу для сверхнизких орбит, под названием Phantom. Работы ведутся европейским подразделением компании, расположенным в Бельгии. Phantom разрабатывается для миссии ESA Skimsat, в которой Redwire сотрудничает с Thales Alenia Space, и будет предлагаться европейским и международным клиентам.
Phantom может вмещать полезную нагрузку массой до 50 кг, при этом общая масса космического аппарата может достигать 300 кг. Для поддержания орбиты в течение пяти лет космический аппарат использует электрическую тягу.
Phantom не является копией SabreSat. Это две разные платформы с разными базовыми технологиями и параметрами производительности.
#VLEO #США #война
Преимущества сверхнизких околоземных орбит, то есть орбит, высотой ниже 400 км, хорошо известны. Такие спутники могут обеспечить более высокое пространственное разрешение съемки (до 10 см), по сравнению с аппаратами, находящимися на традиционных для ДЗЗ орбитах (400–700 км), а их запуск обойдётся дешевле.
Американская компания Redwire разрабатывает спутниковую платформу SabreSat для работы на сверхнизких орбитах. В качестве основного заказчика компания рассматривает правительственные организации США.
По словам исполнительного вице-президента Redwire по вопросам национальной безопасности Дина Беллами, полеты на высотах выше беспилотных летательных аппаратов и ниже разросшихся низкоорбитальных спутниковых группировок повышают устойчивость системы наблюдения Земли. Если противоспутниковое оружие поразит цели на традиционных низких орбитах, то спутники на сверхнизких орбитах могут уцелеть.
Масса платформы SabreSat с полезной нагрузкой оставляет около 200 кг. При необходимости SabreSat можно наращивать в длину с помощью дополнительных модулей, а также увеличивать площадь солнечных батарей.
Основной проблемой освоения сверхнизких орбит является то, что их трудно поддерживать: остатки атмосферы слишком быстро снижают высоту орбиты спутника. Для поддержания высоты орбиты Redwire использует электрический ракетный двигатель. “В зависимости от продолжительности миссии мы можем зачерпнуть атомарный кислород и азот, чтобы использовать их в наших электрических двигателях”, — сообщил Спенс Уайз, старший вице-президент Redwire по миссиям и платформам.
Помимо SabreSat, Redwire разрабатывает ещё одну спутниковую платформу для сверхнизких орбит, под названием Phantom. Работы ведутся европейским подразделением компании, расположенным в Бельгии. Phantom разрабатывается для миссии ESA Skimsat, в которой Redwire сотрудничает с Thales Alenia Space, и будет предлагаться европейским и международным клиентам.
Phantom может вмещать полезную нагрузку массой до 50 кг, при этом общая масса космического аппарата может достигать 300 кг. Для поддержания орбиты в течение пяти лет космический аппарат использует электрическую тягу.
Phantom не является копией SabreSat. Это две разные платформы с разными базовыми технологиями и параметрами производительности.
#VLEO #США #война