Спутник ДЗЗ
3.23K subscribers
2.51K photos
141 videos
191 files
2.25K links
Человеческим языком о дистанционном зондировании Земли.

Обратная связь: @sputnikDZZ_bot
加入频道
This media is not supported in your browser
VIEW IN TELEGRAM
Чтение и запись векторных данных

Чтение векторных файлов осуществляет функция vect — та же, что отвечает за создание векторных данных.

Одним из распространенным форматов файлов векторных данных является шейпфайл (shapefile). Это набор из четырёх (или большего числа) файлов с одинаковыми именами, но разными расширениями. Для шейпфайла x в одной папке должны находиться: x.shp, x.shx, x.dbf и x.prj.

Откроем шейпфайл, поставляемый вместе с пакетом terra:

library(terra)
filename <- system.file("ex/lux.shp", package="terra")
## [1] "C:/Users/User/AppData/Local/R/win-library/4.3/terra/ex/lux.shp"

s <- vect(filename)
s
## class : SpatVector
## geometry : polygons
## dimensions : 12, 6 (geometries, attributes)
## extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
## source : lux.shp
## coord. ref. : lon/lat WGS 84 (EPSG:4326)
## names : ID_1 NAME_1 ID_2 NAME_2 AREA POP
## type : <num> <chr> <num> <chr> <num> <int>
## values : 1 Diekirch 1 Clervaux 312 18081
## 1 Diekirch 2 Diekirch 218 32543
## 1 Diekirch 3 Redange 259 18664


Функция system.file возвращает полный путь к файлу. Она нужна только для примеров работы с данными, поставляемыми с R. Для собственных файлов используйте функцию vect, указав полный путь к нужному файлу.

vect возвращает объекты SpatVector. Фактически, она создаёт эти объекты с нуля, как мы видели раньше, или из файлов векторных данных различных форматов. В нашем случае построен SpatVector, состоящий из 10 полигонов с 6 атрибутами (переменными).

Для записи векторных служит функция writeVector:

outfile <- "shp_test.shp"
writeVector(s, outfile)


Чтобы перезаписать файл поверх, нужно добавить аргумент overwrite=TRUE

writeVector(s, outfile, overwrite=TRUE)


Для удаления файлов используют функции file.remove или unlink. Будьте осторожны, не спешите!

При удалении шейпфайла нам придётся удалять сразу несколько файлов. В качестве примера удалим shp_test. Сначала мы выделим нужные файлы функцией list.files, указав шаблон имени файла, а затем удалим их при помощи file.remove

ff <- list.files(pattern="^shp_test")
ff
## [1] "shp_test.cpg" "shp_test.dbf" "shp_test.prj" "shp_test.shp" "shp_test.shx"
file.remove(ff)
## logical(0)


TRUE на выходе file.remove показывает, что заданный файл удален.

#R
This media is not supported in your browser
VIEW IN TELEGRAM
Преобразование координат объектов `SpatVector`

Для преобразования координат объектов SpatVector и SpatRaster из одной системы координат в другую в пакете terra используется функция project.

Входные параметры project():

1. x: объект SpatVector или SpatRaster, который нужно преобразовать.
2. y: новая система координат (CRS) в виде строки (WKT, PROJ4 или EPSG-кода) или объекта SpatRaster, у которого будет взята система координат.
3. method: метод интерполяции, используемый для преобразования растровых данных. По умолчанию используется "bilinear".
4. res: пространственное разрешение итогового растра (если x — объект SpatRaster).
5. size: размер итогового растра (если x является SpatRaster).
6. filename: имя файла для сохранения результата.
7. ...: Дополнительные аргументы, передаваемые другим методам.

С использованием project для перепроецирования растров мы уже знакомы. Теперь посмотрим, как функция работает с векторными данными. Спойлер: точно также, даже проще.

Создадим вектор (SpatVector) в системе координат WGS84:

library(terra)

# Создадим вектор из WKT.
v <- vect("POLYGON ((0 -5, 10 0, 10 -10, 0 -5))", crs="EPSG:4326")

plot(v, border='blue', col='yellow', lwd=3, main = "Исходный полигон в WGS84")


Преобразуем SpatVector в новую систему координат EPSG:3857:

# Проектируем в EPSG:3857
v_projected <- project(v, "EPSG:3857")

# Проверяем старую и новую системы координат
cat(crs(v))
cat(crs(v_projected))

plot(v_projected, col = "red", main = "Перепроецированный полигон в EPSG:3857")


Преобразуем SpatVector в систему координат другого объекта SpatVector:

# Создадим новый вектор в UTM Zone 33N (EPSG:32633)
v2 <- vect(cbind(x = c(1, 2, 3), y = c(1, 2, 3)), crs = "EPSG:32633")

# Перепроецирование v в систему координат v2
v1_projected <- project(v, v2)

# Проверяем новую систему координат
cat(crs(v1_projected))

plot(v1_projected, col = "red", main = "Перепроецированный полигон в UTM Zone 33N")


#R
This media is not supported in your browser
VIEW IN TELEGRAM
rsi — загрузка данных из STAC и расчет спектральных индексов [ссылка]

Пакет rsi (от repeated spatial infelicities) предоставляет пользователю:

- Интерфейс к проекту Awesome Spectral Indices project, который содержит список спектральных индексов в виде таблицы tibble.
- Метод эффективного вычисления этих спектральных индексов.
- Метод загрузки данных с любого сервера STAC, с дополнительными настройками для загрузки популярных данных Landsat, Sentinel-1 и Sentinel-2 с бесплатных и публичных серверов STAC.
- Метод объединения нескольких растров, содержащих различные наборы данных, в единый растровый стек.

Функция spectral_indices() возвращает таблицу спектральных индексов.

Функция get_stac_data() позволяет загружать изображения из любого доступного каталога STAC. Например, можно загрузить композит каналов Landsat с маской облачности:

aoi <- sf::st_point(c(-74.912131, 44.080410))
aoi <- sf::st_set_crs(sf::st_sfc(aoi), 4326)
aoi <- sf::st_buffer(sf::st_transform(aoi, 5070), 1000)

landsat_image <- get_stac_data(
aoi,
start_date = "2022-06-01",
end_date = "2022-06-30",
pixel_x_size = 30,
pixel_y_size = 30,
asset_names = c("red", "blue", "green"),
stac_source = "https://planetarycomputer.microsoft.com/api/stac/v1/",
collection = "landsat-c2-l2",
mask_band = "qa_pixel",
mask_function = landsat_mask_function,
output_filename = tempfile(fileext = ".tif"),
item_filter_function = landsat_platform_filter,
platforms = c("landsat-9", "landsat-8")
)


Для популярных данных, например для снимков Landsat, есть отдельные функции, где большинство параметров настроено по умолчанию:

landsat_image <- get_landsat_imagery(
aoi,
start_date = "2022-06-01",
end_date = "2022-06-30",
output_filename = tempfile(fileext = ".tif")
)


По умолчанию, данные загружаются из Microsoft's Planetary Computer API.

Теперь на основе полученных каналов снимков Landsat рассчитаем спектральные индексы при помощи calculate_indices():

indices <- calculate_indices(
landsat_image,
available_indices,
output_filename = tempfile(fileext = ".tif")
)


Наконец, в rsi есть утилита для эффективного объединения растров, содержащих различные данные об одном и том же месте, в VRT, что позволяет программам типа GDAL рассматривать эти отдельные источники данных как единый файл.

Например, мы можем объединить наши снимки Landsat с полученными индексами:

raster_stack <- stack_rasters(
c(landsat_image, indices),
tempfile(fileext = ".vrt")
)


#R #индексы
This media is not supported in your browser
VIEW IN TELEGRAM
Работа с элементами SpatVector

При работе с векторными данными в terra многие задачи не требуют особых пояснений, потому что решаются теми же функциями, которые использовались для растровых данных, или даже функциями из “базового” R*.

Рассмотрим несколько примеров.

1️⃣ Определим число элементов векторных данных. Сначала создадим тестовый SpatVector из данных, поставляемых вместе с пакетом:

library(terra)

v <- vect(system.file("ex/lux.shp", package="terra"))

v
# class : SpatVector
# geometry : polygons
# dimensions : 12, 6 (geometries, attributes)
# extent : 5.74414, 6.528252, 49.44781, 50.18162 (xmin, xmax, ymin, ymax)
# source : lux.shp
# coord. ref. : lon/lat WGS 84 (EPSG:4326)
# names : ID_1 NAME_1 ID_2 NAME_2 AREA POP
# type : <num> <chr> <num> <chr> <num> <int>
# values : 1 Diekirch 1 Clervaux 312 18081
# 1 Diekirch 2 Diekirch 218 32543
# 1 Diekirch 3 Redange 259 18664


Вектор** v содержит 12 элементов и 6 атрибутов (переменных):

names(v)
# [1] "ID_1" "NAME_1" "ID_2" "NAME_2" "AREA" "POP"


Число элементов v можно подсчитать функциями:

length(v)
nrow(v)


2️⃣ Добавление атрибута в вектор. Создавать векторные данные с заданным набором атрибутов мы умеем. Теперь добавим атрибут к уже имеющимся данным.

Добавим идентификаторы, равные номеру элемента в векторе. Сделаем это двумя способами:

v[["ID_new_1"]] <- 1:nrow(v)
v$ID_new_2 <- seq.int(nrow(v))


3️⃣ Получение координат элементов (геометрии). Координаты элементов векторов без атрибутов возвращает функция geom:

geom(v)
# geom part x y hole
# [1,] 1 1 6.026519 50.17767 0
# [2,] 1 1 6.031361 50.16563 0
# [3,] 1 1 6.035646 50.16410 0
# [4,] 1 1 6.042747 50.16157 0
# [5,] 1 1 6.043894 50.16116 0
# ...


На выходе получается матрица значений координат. Или вектор (просто vector), или список, или таблица — в зависимости от настроек функции, которых очень много.

4️⃣ Конвейер функций. Конвейерная обработка функций в R (|>) встроена в язык, начиная с версии R 4.1.0. Конвейер принимает вывод одной функции и передает его в другую функцию в качестве аргумента. Иногда это делает процесс обработки данных более наглядным.

Например, вместо

v <- vect(system.file("ex/lux.shp", package="terra"))


мы могли бы записать

v <- system.file("ex/lux.shp", package="terra") |>
vect()



* Разумеется, речь идет о перегрузке функций, точнее о перегрузке методов классов Spat* пакета terra.
** Для краткости, здесь мы называем векторные данные просто векторами.

#R
Расширения ggplot2

У популярного графического пакета ggplot2 так много расширений, что в них легко потеряться. К счастью есть веб-ресурсы, помогающие выбрать нужное расширение.

🔗ggplot2 extensions (https://exts.ggplot2.tidyverse.org) — список расширений ggplot2, который можно дополнять, и галерея примеров применения расширений.

🖥 Awesome ggplot2 — обновляемый список учебников, пакетов и других ресурсов, связанных с ggplot2.

📚 ggplot2 extended (https://ggplot2-extended-book.com/) — электронная книга от Antti Rask, посвященная расширениям ggplot2. Пока в ней в основном заготовки будущих разделов, но содержание многообещающее. Спасибо коллегам за наводку!

#R
tidyterra

Пакет tidyterra (https://dieghernan.github.io/tidyterra/) предоставляет 📸 методы, обычные для пакетов “вселенной” tidy (tidyverse), объектам SpatRaster и SpatVector, созданным в пакете terra.

В tidyterra также реализованы 📸 функции geom_* для построения графиков объектов SpatRaster и SpatVector с помощью ggplot2.

tidy-методы, реализованные в tidyterra, работают по-разному в зависимости от типа объекта Spat*:

SpatVector: методы реализованы с помощью terra::as.data.frame(). Строки соответствуют геометрии, а столбцы — атрибутам геометрии.
SpatRaster: подход tidyterra заключается в том, чтобы рассматривать слои (layers) как столбцы таблицы, а ячейки (cells) — как строки. Например, select(SpatRaster, 1) будет выбирать первый слой SpatRaster.

Методы возвращают тот же тип объекта, который использовался на входе, если только ожидаемое поведение метода не предполагает возврат объекта другого типа. Например, as_tibble() вернет tibble.

tidyterra задумана как удобная обертка terra. Такой подход имеет свою цену в плане производительности. Если вы активно используете terra или вам нужно работать с большими растровыми файлами, используйте terra, как более ориентированную на производительность.

📖 Hernangómez, D., (2023). Using the tidyverse with terra objects: the tidyterra package. Journal of Open Source Software, 8 (91), 5751, https://doi.org/10.21105/joss.05751.

#R
Логические операции

Рассмотрим логические операции с векторными данными (SpatVector) в пакете terra.

Начнем с функций crop и intersect — для обрезки и вычисления пересечения векторных данных соответственно:

crop(x, y, ...)
intersect(x, y, ...)


Функции принимают на вход объекты SpatVector, SpatExtent или SpatRastercrop первым аргументом могут быть только векторы и растры). С растровым использованием этих функций мы уже сталкивались здесь и здесь.

Построим полигон p1 и лежащий внутри него полигон p2:

p1 <- vect("POLYGON ((0 0, 8 0, 8 9, 0 9, 0 0))")
p2 <- vect("POLYGON ((2 6, 3 6, 3 8, 2 8, 2 6))")
plot(p1, lwd=2)
lines(p2, lwd=2, col="blue")


lines использована для рисования поверх первого plot’a.

Применив к p1 и p2 обрезку и пересечение

cropped <- crop(p1,p2)
isected <- intersect(p1,p2)


мы получим одинаковый результат:

 # class       : SpatVector 
# geometry : polygons
# dimensions : 1, 0 (geometries, attributes)
# extent : 2, 3, 6, 8 (xmin, xmax, ymin, ymax)
# coord. ref. :


Разница в работе функций появляется, когда у векторных данных есть атрибуты:

p1[["id1"]] <- 1L
p2[["id4"]] <- 1L

cropped <- crop(p1,p2)
# class : SpatVector
# geometry : polygons
# dimensions : 1, 1 (geometries, attributes)
# extent : 2, 3, 6, 8 (xmin, xmax, ymin, ymax)
# coord. ref. :
# names : id1
# type : <int>
# values : 1
isected <- intersect(p1,p2)
# class : SpatVector
# geometry : polygons
# dimensions : 1, 2 (geometries, attributes)
# extent : 2, 3, 6, 8 (xmin, xmax, ymin, ymax)
# coord. ref. :
# names : id1 id4
# type : <int> <int>
# values : 1 1


У crop, в отличие от intersect, геометрия и атрибуты y не передаются на выход.
Обрезать SpatVector можно по прямоугольнику (SpatRaster, SpatExtent) или по другому SpatVector. Если это не полигоны, то используется минимальная выпуклая оболочка.

Объединение векторов SpatVector, а также объектов SpatExtent, осуществляет функция union.

При объединении полигонов нужно учесть один важный момент. Объединим p1 и p2 с помощью union:

united <- union(p1, p2)
# class : SpatVector
# geometry : polygons
# dimensions : 2, 2 (geometries, attributes)
# extent : 0, 8, 0, 9 (xmin, xmax, ymin, ymax)
# coord. ref. :
# names : id1 id4
# type : <int> <int>
# values : 1 NA
# 1 1
plot(united[1], lwd=2, col="red")
plot(united[2], add=T, lwd=2, col="blue")


В результате получим вектор, состоящий из двух полигонов: “дырявого” p1 с вырезанным из него p2, и, собственно, p2. Если такой эффект вам не нужен, а нужно просто создать SpatVector из нескольких полигонов, используйте rbind:

merged <- rbind(p1, p2)
# class : SpatVector
# geometry : polygons
# dimensions : 2, 2 (geometries, attributes)
# extent : 0, 8, 0, 9 (xmin, xmax, ymin, ymax)
# coord. ref. :
# names : id1 id4
# type : <int> <int>
# values : 1 NA
NA 1



Объединение линий и точек c помощью union просто объединяет два набора данных без каких-либо геометрических пересечений — так же, как и rbind. На выходе получим атрибуты обоих исходных векторов.

Если x и y имеют разный геометрический тип, то возвращается коллекция SpatVectorCollection.

Функция c() создает их векторов SpatVectorCollection или добавляет объекты в существующую коллекцию:

collected <- c(p1, p2)
# class : SpatVectorCollection
# length : 2
# geometry : polygons (1)
polygons (1)
# names : ,


#R
Пространственные отношения между геометриями

Пространственные отношения между объектами — это про то, кто кого касается, пересекает, лежит внутри и т. п.

Выяснить пространственные отношения между геометриями векторов помогает функция relate. Она возвращает логическую матрицу, указывающую на наличие или отсутствие определенных пространственных отношений между геометриями x и y:

relate(x, y, relation, ...)


relation — отношение между геометриями: "intersects", "touches", "crosses", "overlaps", "within", "contains", "covers", "coveredby", "disjoint".

Посмотрим как это работает. Создадим новый полигон, лежащий внутри p1 и не пересекающийся с p2:

merged <- rbind(p1, p2)
p3 <- vect("POLYGON ((4 6, 5 6, 5 8, 4 8, 4 6))")
plot(merged, lwd=2)
lines(p3, lwd=2, col="blue")


Найдем, с какими полигонами из merged пересекается (intersects) p3:

relate(merged, p3, "intersects")
[,1]
[1,] TRUE
[2,] FALSE


p3 пересекается с первым элементом merged, то есть с p1, и не пересекается со вторым (p2).

is.related(x, y, relation, ...) возвращает логический вектор, указывающий на наличие/отсутствие определенных пространственных отношений между x и любой из геометрий в y.

is.related(merged, p3, "intersects")
[1] TRUE FALSE


#R
tidyplots

Цель пакета tidyplots (https://tidyplots.org/) — упростить создание графиков для научных публикаций. Он позволяет постепенно добавлять, удалять и корректировать элементы графиков, используя последовательный и интуитивно понятный синтаксис.

Многие пакеты tidy-вселенной так или иначе связаны с Хэдли Уикемом (Hadley Wickham), чего нельзя сказать о tidyplots. Более того, его автор Ян Бродер Энглер (Jan Broder Engler) предложил грамматику графики альтернативную принятой в знаменитом пакете ggplot2, разработанном Уикемом.

Для построения графиков используются функции вида Add, Remove, Adjust, Themes, Split, Output. С Add все понятно, но зачем нужен Remove? А вот зачем: вместо того, чтобы обнулять или делать пустым ненужный элемент, функции Remove говорят: “удалить заголовок легенды” (remove_legend_title) или “удалить ось y” (remove_y_axis). Вроде бы мелочь, но кому-то именно такой способ работы придется по душе. Функции Adjust настраивают элементы графиков, например, размер шрифта или цвет. Themes — это темы, то есть типовые настройки графиков. Split позволяет строить несколько графиков одновременно. Output настраивает вывод графиков в файлы.

Подробнее о работе с пакетом читайте в:

📖 Начало работы с tidyplots

Еще подробнее — в препринте.

Ян Энглер является также автором пакета tidyheatmaps.

Спасибо коллегам за наводку!

#R
Introduction to Environmental Data Science

Книга Introduction to Environmental Data Science (https://bookdown.org/igisc/EnvDataSci/) Джерри Дэвиса (Jerry Davis) посвящена анализу пространственных данных, связанных с исследованиями окружающей среды, на языке программирования R.

В книге есть краткое введение в R, описана работа с векторными и растровыми данными, моделирование, анализ спутниковых снимков и временных рядов.

Environmental Data Science book (https://edsbook.org/welcome) — аналогичный ресурс на Python.

Спасибо коллегам за наводку!

#R #python