Спутник ДЗЗ
3.24K subscribers
2.53K photos
141 videos
191 files
2.27K links
Человеческим языком о дистанционном зондировании Земли.

Обратная связь: @sputnikDZZ_bot
加入频道
Проект NASA Wildfire Digital Twin разрабатывает новые модели искусственного интеллекта для прогнозирования распространения пожаров и задымления [ссылка]

Wildfire Digital Twin (Цифровой двойник лесных пожаров) будет использовать искусственный интеллект и машинное обучение для прогнозирования потенциальных путей распространения пожаров в режиме реального времени, объединяя данные с наземных, воздушных и космических датчиков для создания глобальных моделей с высокой точностью.

Современные глобальные модели, описывающие распространение лесных пожаров и дыма, имеют пространственное разрешение около 10 километров. Wildfire Digital Twin будет создавать региональные ансамблевые модели с пространственным разрешением от 10 до 30 метров.

См. также NASA “Wildfire Digital Twin” Pioneers New AI Models and Streaming Data Techniques for Forecasting Fire and Smoke.

📸 Моделирование распространения аэрозоля PM 2.5 во время контролируемого выжигания с помощью модели WRF-SFIRE.

#пожары
Новая технология обнаружения лесных пожаров из космоса

Австралийские учёные предложили новую технологию оперативного обнаружения лесных пожаров по данным наблюдений из космоса. Технология нацелена на выявление источников дыма, которые можно увидеть прежде, чем огонь разгорится и станет достаточно большим.

Для наблюдений используется гиперспектромер, данные которого обрабатываются непосредственно на борту спутника. Дым отделяется от облаков на снимках при помощи модели искусственного интеллекта. После этого информация об источниках дыма, гораздо более компактная чем исходные гиперспектральные данные, передаётся на землю.

Технология будет реализована в предстоящей австралийской миссии Kanyini, запуск которой планируется в этом году.

Малый КА SASAT1 для миссии Kanyini построен на платформе Apogee Bus (CubeSat 6U) от австралийской компании Inovor Technologies. Характеристики гиперспектрометра HyperScout 2 можно посмотреть здесь.

Таким образом, сочетание гиперспектральных данных, их обработки на борту спутника, а также обнаружения источников дыма методами ИИ, позволило реализовать технологию обнаружения пожаров на миниатюрном КА, размещённом на низкой околоземной орбите. Если добавить к этому возможность сбрасывать данные на землю с минимальной задержкой, то получится потягаться с геостационарными аппаратами — нынешними лидерами в части оперативности предоставления данных об очагах возгораний.

📸 Художественное изображение космического аппарата миссии Kanyini

#гиперспектр #пожары #австралия
Раннее обнаружение дыма лесных пожаров по снимкам Landsat с помощью облегченной сверточной нейросети

📖 Zhao, L., Liu, J., Peters, S., Li, J., Oliver, S., & Mueller, N. (2022). Investigating the Impact of Using IR Bands on Early Fire Smoke Detection from Landsat Imagery with a Lightweight CNN Model. Remote Sensing, 14(13), 3047. https://doi.org/10.3390/rs14133047

Шлейф дыма — первое, что видно из космоса при возникновении лесных пожаров. Поэтому обнаружение дыма важно для раннего обнаружения пожара.

Для обнаружения дыма на спутниковых снимках использовано глубокое обучение.

Создан набор данных, состоящий из 1836 изображений трех классов: “Smoke”, “Clear” и “Other_aerosol”. Каждое изображение состоит из шести каналов снимков, полученных спутниками Landsat 5 и Landsat 8 с пространственным разрешением 30 метров.

Для использования модели обнаружения дыма на борту малого космического аппарата (например, такого) разработана облегченная модель сверточной нейронной сети (CNN) — Variant Input Bands for Smoke Detection (VIB_SD), которая достигла конкурентоспособной точности с современной моделью SAFA, имея менее 2% от ее количества параметров.

Исследование показало, что модель, обученная с использованием мультиспектральных спутниковых данных, может эффективно обнаруживать смешанный с облаками дым от пожара на небольших географических территориях.

📸 Шлейфы дыма от лесных пожаров на снимках Landsat-8 OLI.

#пожары #нейронки
Компания Urban Sky, осуществляющая съемку со стратостатов, выиграла грант NASA на разработку системы мониторинга лесных пожаров [ссылка]

Американская компания Urban Sky объявила о заключении контракта с NASA Earth Science Technology Office на создание системы, которая будет использовать стратостаты для обнаружения и мониторинга лесных пожаров и передачи информации пожарным на земле. Сумма трехлетнего контракта составляет около 2,6 млн долларов.

По словам Эндрю Антонио, исполнительного директора компании, этот проект является продолжением предыдущей работы Urban Sky по программе NASA Small Business Innovation Research по разработке небольшого теплового инфракрасного датчика, который компания испытала на своих воздушных шарах.

В рамках нового контракта Urban Sky и её партнеры повысят точность геолокации датчика и добавят возможность передавать на землю не только данные о температуре, но и сделанные снимки. Новая система связи, разработанная компанией goTenna, специализирующейся на создании систем мобильной связи, позволит передавать данные пожарным, работающим в полевых условиях.

Полезная нагрузка будет работать как в режиме обнаружения лесных пожаров, так и в режиме, который компания называет "режимом картографирования периметра", что позволяет следить за ростом пожара.

По словам Антонио, система Urban Sky будет превосходить конкурентов за счет более высокого пространственного разрешения, поскольку датчики будут находиться в стратосфере, а не на орбите. По его оценкам, датчики его компании смогут делать тепловые инфракрасные снимки с разрешением 3,5 метра.

Он добавил, что воздушные шары смогут быть более оперативными, чем спутники, и быстро развертываться при необходимости мониторинга конкретного пожара, а не ждать, пока спутник пройдет над головой. Они также смогут обеспечить непрерывное наблюдение. "Мы можем “припарковать” воздушный шар над пожароопасным регионом на несколько дней".

Urban Sky рассматривает эту работу как естественное развитие предыдущего бизнеса, связанного с получением изображений высокого разрешения с помощью своей платформы "микрошаров" (“microballoon”) 📸. Компания привлекла 9,75 млн долларов в рамках серии А в октябре 2023 года для расширения этой работы и в настоящее время совершает несколько полетов на воздушных шарах в неделю.

По словам Антонио, компания также заметила интерес к своей системе микрошаров со стороны Пентагона. По его словам, для Министерства обороны Urban Sky может предоставить всю систему, включая датчики, или только сам шар, на который военные установят свои полезные нагрузки.

📸 Снимки лесного пожара в штате Нью-Мексико (2 июня 2023 год) с пространственным разрешением 3 метра, сделанные с борта стратостата Hotspot в тепловом инфракрасном диапазоне (источник).

#LST #пожары #война
Сервис NASA Fire Information for Resource Management System (FIRMS) распространяет данные об очагах возгораний и тепловых аномалиях в режиме, близком к реальному времени (Near Real-Time, NRT). Данные FIRMS получены с помощью спектрорадиометров MODIS на спутниках Aqua и Terra, а также приборов VIIRS на спутниках S-NPP, NOAA 20 и NOAA 21. По всему миру эти данные доступны в течение 3 часов после наблюдения со спутника, а в США и Канаде они доступны в режиме реального времени*.

Данные FIRMS изначально предназначались для выявления и ликвидации пожаров в лесных и сельскохозяйственных угодьях. Cегодня сервис FIRMS используется также для определения мест активных боевых действий.

🗺 Интерактивная карта FIRMS

📖 Подробнее о продуктах FIRMS NRT, в том числе — об алгоритмах расчёта.
🛢 Скачать данные FIRMS в виде файлов
🛢 FIRMS на NASA Earthdata Search
🖥 FIRMS API

🌍 FIRMS на GEE с запаздыванием на 2–3 суток

*NASA EOSDIS определяет данные реального времени (Real-Time, RT) как данные, которые становятся доступны в течение 60 минут после пролёта спутника. Данные FIRMS для США и Канады распространяются в режиме Ultra Real-Time (URT) и становятся доступны менее чем через 60 секунд после пролёта спутника над большей части территории этих стран.

#пожары #данные #GEE #основы
Получение данных FIRMS в R

Для получения данных воспользуемся API FIRMS. Здесь же приведена справка по параметрам API.

Параметры API 1️⃣:

🔹 Area — прямоугольная область интереса
🔹 Source — источник данных: прибор (MODIS/VIIRS) и спутник
🔹 Map Key — ключ доступа, который можно получить бесплатно 2️⃣
🔹 Date — дата
🔹 Day Range — интервал времени, до 10 суток

Весь код — это строка запроса к API. На выходе получаем таблицу данных, где, в частности, указаны дата, координаты и интенсивность возгорания.

Задаём границы области и преобразуем их в строку area. Результат добавляем к строке запроса к API:

# 1. Область интереса

xmin <- 130.2
ymin <- 60.0
xmax <- 133.5
ymax <- 61.8

area_coords <- c(xmin, ymin, xmax, ymax)
area <- paste(area_coords,sep = ",",collapse = ",")

# 2. Данные о возгораниях

get_fire_data <- function(main_url,map_key,source,area,day_range,date) {
url <- paste(main_url, map_key, source, area, day_range, date, sep = "/")
fire_data <- data.table::fread(url)
return(fire_data)
}


3️⃣ область интереса.

#R #пожары
Журнал “Наука и технологии Сибири”. Выпуск 13, 2024

🌳
Лесные ресурсы. Риски и решения [скачать]

🔹Экспертные статьи

- Парадигма устойчивого управления лесами: Баланс ресурсных и экосистемных функций
- Климатические рубежи меняют гидрологический статус лесов

🔹Охрана лесов от пожаров

- Усовершенствованная технология мониторинга интенсивности пожаров растительности и оценки пожарных эмиссий дистанционными средствами
- Технология составления карт растительных горючих материалов (карт РГМ)
- Краткий справочник эколого-географических и лесопирологических особенностей лесных районов
- Технология снижения пожароопасности вырубок путем контролируемых выжиганий
- База данных по мировой пилотируемой пожарной авиации

🔹Защита леса

- Технология проведения профилактических мероприятий по защите лесов от сибирского шелкопряда
- Методы и инструменты государственного лесопатологического мониторинга
- Лесопатологический мониторинг в Байкальском регионе: проблемы и пути решения
- Основы технологии защиты сосновых культур от восточного майского хруща

🔹Лесные культуры и селекция

- Уточнение лесосеменного районирования сосны обыкновенной на территории Средней и частично Восточной Сибири
- Применение методов дистанционного зондирования земли для мониторинга лесных селекционно-семеноводческих объектов
- Ускорение лесной селекции как метод интенсификации лесного хозяйства России
- Посадочный материал хвойных пород
- Коллекция эмбриогенных культур лиственницы: состояние и применение для плантационного лесовыращивания

🔹Мониторинг состояния и функционирования лесных экосистем

- Эколого-климатические станции мониторинга потоков климатически активных веществ в рамках реализации государственных
- Мониторинг техногенно-нарушенных земель на основе анализа
- Мобильная обсерватория для маршрутного мониторинга баланса диоксида углерода в наземных экосистемах Приенисейской Сибири

🔹Экосистемные услуги лесов

- Разработка лесохозяйственных и экосистемных мероприятий по повышению средозащитных функций водоохранных лесов Иркутской области на основе комплексной лесоводственно-экологической оценки

🔗 Страница журнала “Наука и технологии Сибири”

#лес #пожары #журнал
Журнал “Наука и технологии Сибири”. Выпуск 14, 2024

🌲 Ресурсы леса. Технологии и материалы [скачать]

🔹Экспертная статья

- Перспективные методы получения востребованных химических веществ и материалов из отходов переработки древесины

🔹Лесохимические продукты для медицины, сельского хозяйства

- Технология переработки отходов лесопиления в комплексное удобрение
- Новые методы получения биологически активных веществ из древесины и коры

🔹Новые вещества и материалы из растительного сырья

- Пиролиз хвои сосны Pinus sylvestris L.: физико-химические показатели торрефикатов и биоугля
- Перспективные пористые материалы из древесной коры
- Многофункциональная целлюлоза из альтернативного ежегодно возобновляемого сырья — мискантуса
- Биодеградируемые и биосовместимые полимеры и сополимеры α-ангеликалактона
- Ученые Института химии твердого тела и механохимии СО РАН предложили состав древесно-стружечных плит с повышенными характеристиками прочности, водо- и огнестойкости.

🔹Методы таксации и стоимостной оценки лесов

- Методика определения восстановительной стоимости зеленых насаждений
- Инновационные методы таксации и мониторинга лесов с использованием лазерного сканирования, аэрокосмической съемки и спутникового геопозиционирования
- Использование материалов наземных GNSS измерений при таксации лесов

🔹Биотехнологии в лесном комплексе

- Инновационные микробиологические технологии для развития лесного комплекса России
- Микроорганизмы как индикаторы состояния лесных почв после рубок и пожаров

🔗 Страница журнала “Наука и технологии Сибири”

#лес #пожары #журнал
This media is not supported in your browser
VIEW IN TELEGRAM
Пожар в парке

Один из крупнейших лесных пожаров за всю историю Калифорнии, Park Fire, начался 24 июля в парке Верхний Бидвелл (Upper Bidwell Park) на севере штата, отчего и получил своё название.

26 и 27 июля метеоспутник NOAA GOES-18 сделал 📸 серию снимков, на которых видно, как густые шлейфы дыма поднимаются от пламени и уносятся на северо-восток.

В настоящее время пожар продолжает бушевать. Информацию о нём можно получить на сайте Департамента лесного хозяйства и пожарной охраны Калифорнии.

#пожары #снимки #данные
На снимке, сделанном 12 августа 2024 года космическим аппаратом Sentinel-2, показаны пожары в окрестности Афин (Греция). Снимок обработан таким образом, что растительность выделена красным цветом, а сгоревшие участки — чёрным (вероятно, комбинация каналов 8-4-3). Выгоревшая площадь превышает 100 кв. км.

#снимки #пожары
Прекратилось активное горение “пожара в Парке”

По состоянию на 26 августа Cal Fire сообщила об отсутствии активного горения в очаге пожара в Парке” (Park Fire). За прошедший месяц этот пожар уничтожил более 700 строений. По состоянию на конец августа он стал четвёртым по величине пожаром за всю историю штата и самым крупным пожаром 2024 года. На его счету почти 1700 квадратных километров выгоревшей земли в Северной Калифорнии.

На анимации 1️⃣ показано развитие пожара в период с 25 июля по 10 августа. Данные о периметре пожара получены из набора данных Fire Events Data Suite (FEDS), который отслеживает рост и поведение пожаров в США и прилегающих районах Канады. Каждые 12 часов FEDS получает информацию с приборов VIIRS на спутниках Suomi NPP и NOAA-20, которые определяют очаги (hot spots) активных пожаров с разрешением 375 метров на пиксель.

Учёные из Центра космических полетов NASA имени Годдарда отметили два эпизода быстрого распространения огня, которые видны на анимации. В самом начале, 26 июля, огонь устремился на северо-запад. Светло-коричневая область, видимая 28 июля, также является частью выгоревшей территории, но огонь распространялся по сухой травянистой местности слишком быстро для того, чтобы алгоритм FEDS смог связать межу собой обнаруженные пожары, учитывая 12-часовой интервал между пролётами спутника. Второй “бросок” пожара начался на северо-востоке около 6 августа, и к 10 августа данные FEDS показали, что пожар охватил около 1628 квадратных километров.

Сейчас учёные из Лаборатории биосферных наук при Центре Годдарда анализируют поведение пожара, пытаясь определить, что способствовало периодам его быстрого распространения. Результаты отечественных исследований метеорологических признаков возникновения событий быстрого распространения пожаров представлены здесь. Напомним: “За несколько дней до события в районе пожара наблюдается развитие антициклонической циркуляции. Соответствующие ей атмосферные параметры начинают нарастать/снижаться относительно среднемноголетних значений за 4–8 дней до события”.

На снимке 2️⃣, сделанном 26 июля прибором ECOSTRESS (Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station), размещённым на борту МКС, показана температура земной поверхности с пространственным разрешением около 70 метров на пиксель.

Области с самой высокой температурой (тёмно-красные) разместились по периметру пожара и, вероятно, являются зонами активного горения. Обратите внимание, что снимок был сделан после карты FEDS за ту же дату, и периметр пожара (оценочный), похоже, продвинулся вперед. Области с самой низкой температурой (тёмно-синие) соответствуют шлейфам дыма от пожара.

#пожары #данные #снимки #LST
This media is not supported in your browser
VIEW IN TELEGRAM
Лесные пожары 2023 года в Канаде

Сезон лесных пожаров в Канаде в 2023 году стал самым большим по площади за всю историю страны. В 📖 статье, опубликованной в Science of Remote Sensing, с помощью алгоритма отслеживания внутри- и межгодовых изменений (Tracking Intra- and Inter-year Change algorithm, TIIC) определена площадь, пройденная лесными пожарами в лесных экосистемах Канады в пожароопасный сезон 2023 года. Для идентификации лесных пожаров использовались данные временных рядов со спутников Sentinel-2A и -2B, а также Landsat-8 и -9. Пожары были разделены на два класса по периоду обнаружения: летние и осенние пожары. Летние пожары имели место в период с 30 мая по 17 сентября, а осенние — с 17 сентября по 25 октября.

Для пожароопасного сезона 2023 года алгоритм TIIC обнаружил 12,74 миллионов гектаров выгоревшей площади в лесных экозонах Канады, что составляет 1,8% от общей площади экозон с преобладанием лесов. 11,57 миллионов гектаров, или 90,9% от выгоревшей площади, было сожжено летними пожарами и 1,16 млн га (9,1%) — осенними.

Набор данных о выгоревших площадях можно:

🛢 Скачать
🌍 Использовать на GEE

В 📖 статье, опубликованной в журнале Nature Climate Change, приведена другая оценка площади выгоревших лесов. Согласно ей, пожары с мая по сентябрь 2023 года уничтожили более 15 миллионов гектар канадских лесов, что составляет примерно 4% их площади. Исследователи использовали спутниковые данные MODIS, TROPOMI и MOPITT, а также модель инверсии потоков газов CMS-Flux. Метеорологические параметры были взяты из данных CPC и MERRA-2, данные о распространении лесных пожаров уточнялись по трем инвентаризациям — GFED4.1, GFAS и QFED.

Согласно выводам исследования, канадские пожары 2023 года привели к рекордному выбросу в атмосферу порядка 650 миллионов тонн углерода, что сопоставимо с выбросами крупнейших экономик мира и уступает только полным годовым выбросам Китая, Индии и США.

Если лесные пожары происходят неподалеку от мест добычи полезных ископаемых, то в их выбросах присутствует не только нетоксичный углекислый газ, но и опасные химические соединения. Так, всего четыре канадских пожара на северо-западе Канады летом 2023 году привели к выбросу в атмосферу 111 тонн мышьяка — это практически десятая часть всех его годовых выбросов на планете.

#данные #пожары #GHG
Дым в низинах

24 июля 2024 года молния вызвала пожар Вапити (Wapiti) в центральной части штата Айдахо. В конце августа пожар усилился, и к началу сентября его площадь превысила 400 квадратных километров. Спутник Landsat 8 сделал этот снимок пожара 31 августа 2024 года, около 12:30 по местному времени (18:30 по всемирному времени).

Утром 31 августа в районе пожара наблюдалась температурная инверсия (тёплый слой воздуха, покрывающий более холодный), которая задержала дым в низинах. Инверсии могут подавлять пожарную активность, не позволяя солнечному свету и теплу достигать земли. В этот раз инверсия рассеялась после полудня, после чего пожарная активность усилилась.

#пожары #снимки
Пирокумулятивные облака, вызванные лесными пожарами в Канаде

Пирокумулятивные облака — это облака, вызванные пожаром или вулканической активностью. Огонь создаёт конвективные восходящие потоки, которые по мере подъёма при достижении уровня конденсации приводят к образованию облаков — сначала кучевых, а при благоприятных условиях — и кучево-дождевых.

При этом могут возникать пирогенные бури — грозы, усилившиеся из-за лесных пожаров. Они поднимают шлейфы дыма высоко в воздух, часто достигая стратосферы. Эти шлейфы дыма способны распространяться на большие расстояния, влияя на качество воздуха за тысячи километров от мест своего возникновения. Расположение и движение шлейфов дыма можно отслеживать из космоса.

Одним из приборов, которые используются для отслеживания шлейфов дыма, является Ozone Mapping and Profiler Suite (OMPS), размещённый на борту спутников Suomi NPP, NOAA-20 и NOAA-21. Хотя OMPS был разработан для измерения атмосферного озона, он также применяется для обнаружения атмосферных аэрозолей, таких как вулканический пепел, пыль и дым. Один из продуктов OMPS, Aerosol Index (индекс аэрозолей), очень полезен для мониторинга и отслеживания движения атмосферных аэрозолей, поскольку может обнаруживать их над любым типом земной поверхности (включая лёд) и в облаках.

Этим летом снова напомнили о себе лесные пожары в Канаде. На серии 📸 снимков, охватывающей период с 19 июля (левый верхний снимок) по 24 июля (правый нижний снимок), показаны значения аэрозольного индекса OMPS со спутника NOAA-21, расположенные поверх данных прибора VIIRS того же спутника (комбинация “естественные цвета”). Более высокие значения аэрозольного индекса обозначены жёлтым и темно-жёлтым цветом, и представляют собой дым большей плотности (и высоты).

🛢 Данные аэрозольного индекса OMPS в режиме, близком к реальному времени: описание, скачать

#пожары #атмосфера #данные