Спутник ДЗЗ
3.35K subscribers
2.59K photos
143 videos
200 files
2.34K links
Человеческим языком о дистанционном зондировании Земли.

Обратная связь: @sputnikDZZ_bot
加入频道
November 17, 2022
May 12, 2023
May 19, 2023
October 25, 2023
October 26, 2023
November 28, 2023
December 2, 2023
February 21, 2024
April 19, 2024
April 25, 2024
April 27, 2024
June 28, 2024
Отчет о проверке данных Planet Forest Carbon Diligence

Недавно компания Planet выпустила отчет о проверке своих данных о биомассе лесов, Diligence Validation and Intercomparison Report, в котором приведены сравнения Diligence с восемью независимыми наборами данных о биомассе лесов.

Краткие итоги отчета подвел Крис Андерсон, “главный по лесам” в компании Planet. Крис занимается оценками биомассы леса уже давно. В частности, он является соавтором методики оценки биомассы леса при помощи воздушной лидарной съемки, которая применяется для оценки проектов углеродных компенсаций Verra.

Ключевые тезисы статьи Андерсона:

Основное внимание в отчете уделяется взаимному сопоставлению, а не валидации. Валидация предполагает наличие эталонных данных, как правило, наземных измерений. Вместо этого, почти все источники данных о биомассе леса представляют собой смоделированные оценки, которые содержат погрешности. Поскольку ни один из наборов данных не является эталонным, лучший способ оценить качество продукта с данными о биомассе — сравнить его с другими известными данными о биомассе, показав, где новый продукт работает хорошо, а где плохо.

Производительность модели географически неоднородна. Пользователям не рекомендуется интерпретировать показатели производительности модели как ожидаемую точность для каждого пикселя и предлагается трактовать показатели производительности как среднюю ожидаемую точность глобального набора данных.

Моделировалась высота и сомкнутость крон, используя собственный вариант модели U-Net, разработанный для объединения данных оптических мультиспектральных и радарных данных.

Надземная биомасса моделировалась как функция высоты кроны, сомкнутости, высоты над уровнем моря и географического положения. Для моделирования использовались Boosted regression trees. Такая модель, по мысли авторов, может научиться аппроксимировать аллометрические зависимости способом, чувствительным к нескольким компонентам структуры леса.

Традиционной проблемой является удаление облаков и дымки из мультиспектральных снимков. Был разработан агрессивный алгоритм маскировки облаков, который понижал рейтинг пикселей вблизи краев облаков. В результате пользователи могут видеть циклические буферы (circular buffers) в областях, где пиксели были заполнены наблюдениями более низкого качества. Чтобы смягчить этот эффект, разработчики предоставляют набор данных с оценкой качества пикселей, а также ресурс по дням года, который можно использовать для фильтрации и удаления наблюдений низкого качества или наблюдений из отдаленных периодов года.

“Будучи аспирантом-всезнайкой, я часто ворчал по поводу глобальных данных, которые выглядели точными везде и нигде”, пишет Андерсон. На практике очень сложно создать глобальный продукт с одинаковым качеством из-за сложного взаимодействия пространственных и временных отклонений, различий в измерениях и подходов к оптимизации параметров. Разработчики Diligence подошли к этой проблеме с практическими рекомендациями, предоставив подробный анализ погрешностей модели и указав районы, где точность прогноза самая низкая (например, в азиатских палеотропиках). Одним из способов, которым пользователи могут решить проблему точности, является обучение собственных локальных моделей биомассы, используя данные о высоте и сомкнутости крон, предоставляемые Diligence.

#лес #AGB
July 15, 2024
September 29, 2024
Planet-Datasheet-ForestCarbon-Letter.pdf
800.3 KB
September 29, 2024
October 2, 2024
This media is not supported in your browser
VIEW IN TELEGRAM
February 14