Спутник ДЗЗ
3.22K subscribers
2.49K photos
140 videos
191 files
2.23K links
Человеческим языком о дистанционном зондировании Земли.

Обратная связь: @sputnikDZZ_bot
加入频道
Данные о концентрации ледового покрова

Обновлены данные о концентрации морского льда 🧊Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 2.

Набор данных сформирован на основе информации о яркостной температуре, полученной с помощью микроволновых радиометров Scanning Multichannel Microwave Radiometer (SMMR) спутника Nimbus-7, Special Sensor Microwave Imager (SSM/I) и Special Sensor Microwave Imager Sounder (SSMIS). Данные представлены в полярной стереографической проекции (север — EPSG:3411, юг — EPSG:3412) с размером ячейки сетки 25 км x 25 км. Временной охват данных — с 26 октября 1978 года по 31 декабря 2023 года.

Вышла четвертая версия данных 🧊Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 4, которая содержит данные для северной и южной полярных областей с временным охватом от 1 ноября 1978 года до 31 декабря 2023 года.

Набор данных состоит из ежедневных и ежемесячных значений концентрации морского льда, полученных на основе измерений яркостной температуры указанными приборами. Данные представлены в полярной стереографической проекции (север — EPSG:3411, юг — EPSG:3412) на сетке с размерами ячейки 25 км x 25 км в двухбайтовом целочисленном формате.

#данные #лед #микроволны
Ежегодная национальная база данных почвенно-растительного покрова США

🗺 National Land Cover Database (NLCD) — база данных (карта) почвенно-растительного покрова континентальной части США, начиная с этого года станет обновляться ежегодно, превратившись в Annual NLCD. Первая версия ежегодной карты должна быть представлена публике в конце октября.

🔗 Annual National Land Cover Database

В рамках Annual NLCD будет доступен набор из шести ежегодных растровых данных о почвенно-растительном покрове и его изменениях для континентальной части США за период 1985–2023 гг. (пространственное разрешение — 30 м).

🔗 Science Product User Guide

🛢 Доступ к данным

Для Аляски и Гавайских островов планируется выпуск отдельных продуктов.

#LULC #данные #США
Global Urban Polygons and Points Dataset (GUPPD), Version 1 (1975 – 2030)

Глобальная база данных Global Urban Polygons and Points Dataset (GUPPD) содержит информацию о 123 034 городских поселениях с их географическими названиями и численностью населения за период с 1975 по 2030 год с шагом в пять лет. Новая база данных расширяет и уточняет данные Global Human Settlement Urban Centre Database 2015 года, собранные Объединенным исследовательским центром (Joint Research Centre) Европейской комиссии. Методика создания базы GUPPD описана в 📖 документации.

🛢 Данные GUPPD), Version 1

🗺 Карта из набора данных GUPPD, показывающая рост численности населения африканских городов-миллионников (по состоянию на базовый 2020 год) в период с 2015 по 2030 год. Годы, разделенные на пятилетние отрезки, показаны красным (2015), оранжевым (2020), коричневым (2025) и желтым (2030) цветами.

#данные
Данные ГНСС-рефлектометрии, полученные с помощью радара спутника SMAP

📡 Level 1B SMAP Reflectometry, Version 1 — первый полный поляриметрический (full polarimetric) глобальный набор данных ГНСС-рефлектометрии, полученный с помощью радара спутника Soil Moisture Active Passive (SMAP).

Радарный приемник SMAP в конфигурации бистатического радара измеряет горизонтальную и вертикальную составляющие сигнала GPS при его отражении и рассеянии от поверхности Земли. Основными параметрами являются: нормализованные параметры Стокса, эффективная площадь рассеяния (точнее: total power normalized bistatic radar cross-section) и отражательная способность поверхности.

Формат данных: netCDF-4
Временной интервал: 1 октября 2015 г. — н.в.

#GNSSR #данные
Карта типов сельскохозяйственных культур стран ЕС на 2022 год

В 📖 работе представлена карта типов сельскохозяйственных культур на территории Европейского союза (ЕС) на 2022 год с разрешением 10 метров.

Для обучения модели использованы данные наблюдения Земли и данные натурных наблюдений, полученные в рамках проекта Евростата Land Use and Coverage Area Frame Survey (LUCAS) 2022 года. Данные включали 134 684 полигона LUCAS Copernicus, спутниковые снимки Sentinel-1 и Sentinel-2, температуру поверхности земли и цифровую модель рельефа.

На основе этих данных с помощью метода машинного обучения Random Forest были разработаны два классификационных слоя: основная карта и карта заполнения пробелов для устранения пробелов, связанных с облачным покровом. Отметим, что отдельной задачей исследования являлось изучение оптимального набора входных признаков с учетом различных вариантов временного агрегирований спутниковых и климатических данных для получения карты без пространственных разрывов и с максимально возможной тематической точностью.

Объединенные карты, охватывающие 27 стран ЕС, показали общую точность 79,3% для семи основных классов растительного покрова и 70,6% — для всех 19 типов культур.

Обученная модель была использована для создания карты сельскохозяйственных культур Украины за 2022 год и показала свою устойчивость в регионах, не имеющих размеченных образцов для обучения модели.

Для создания карты использовалась платформа Google Earth Engine (GEE):

👨🏻‍💻 Скрипты GEE для создания карт типов сельскохозяйственных культур для 27 стран ЕС и Украины на 2022 год.

📖 Ghassemi, B., Izquierdo-Verdiguier, E., Verhegghen, A., Yordanov, M., Lemoine, G., Moreno Martínez, Á., De Marchi, D., van der Velde, M., Vuolo, F., & d’Andrimont, R. (2024). European Union crop map 2022: Earth observation’s 10-meter dive into Europe’s crop tapestry. Scientific Data, 11(1). https://doi.org/10.1038/s41597-024-03884-y

#данные #сельхоз #LULC #GEE
This media is not supported in your browser
VIEW IN TELEGRAM
QDANN — карты урожайности кукурузы, сои и озимой пшеницы на внутриполевом уровне

В 🛢 наборе данных QDANN 30m Yield Map for Corn, Soy, and Winter Wheat in the U.S представлены общедоступные 30-метровые годовые карты урожайности кукурузы, сои и озимой пшеницы для основных растениеводческих штатов США, начиная с 2008 года. В отличие от других подобных данных, эти карты показывают урожайность на каждом пикселе поля.

Набор данных основан на снимках Landsat и погодных данных Gridmet. Он проверен с помощью записей мониторов урожайности, содержащих около миллиона полевых наблюдений за год.

Карты созданы по методике Quantile Loss Domain Adversarial Neural Networks (QDANN), которая для нас может оказаться гораздо интереснее, чем готовые карты. QDANN использует информацию из наборов данных на уровне округов (county) для картографирования урожайности в более тонком пространственном разрешении, и призвана устранить ограничения, связанные с нехваткой наземных данных для обучения и оценки моделей. QDANN использует стратегию адаптации домена без обучения (unsupervised domain adaptation strategy), обучаясь на маркированных данных уровня округа и используя при этом немаркированные данные подполей, что устраняет необходимость в информации об урожайности на уровне подполей.

Данные объединены в две коллекции — для кукурузы-сои и озимой пшеницы. По сравнению с оригинальной статьей, к данным на GEE добавлены аббревиатуры штатов (свойство ‘state_abbv’) и календарные даты. Это позволяет легко фильтровать по штатам и датам коллекции:

🔹 Corn & Soybean. Слои: b1 – corn, kg/ha; b2 – soybean, kg/ha
🔹 Winter Wheat. Слои: b1 – winter wheat, kg/ha

📖 Ma, Y., Liang, S.-Z., Myers, D. B., Swatantran, A., & Lobell, D. B. (2024). Subfield-level crop yield mapping without ground truth data: A scale transfer framework. Remote Sensing of Environment, 315, 114427. https://doi.org/10.1016/j.rse.2024.114427

#данные #GEE #сельхоз #GAN
This media is not supported in your browser
VIEW IN TELEGRAM
Данные Global Land Cover Estimation (GLanCE) v1

Global Land Cover Estimation (GLanCE) — ежегодные глобальные данные о растительном покрове и его изменениях с 2001 по 2019 год, полученные с помощью снимков Landsat с пространственным разрешением 30 метров. Данные охватывают весь земной шар, кроме Антарктиды и включает 10 наборов научных данных (Science Data Sets, SDS). Для определения почвенно-растительного покрова и его изменений используется алгоритм Continuous Change Detection and Classification (CCDC).

SDS GLanCE разделены на три категории:

1️⃣ Почвенно-растительный покров и его изменения. Четыре набора данных содержат (1) класс почвенно-растительного покрова, (2) оценку качества классификации почвенно-растительного покрова, (3) предыдущий почвенно-растительный покров для тех мест, где произошли изменения и (4) приблизительный день года, когда произошли изменения (DOY).

2️⃣ Динамика озеленения (Greenness Dynamics). Четыре набора данных характеризуют годовую “озелененность” (greenness) с помощью Enhanced Vegetation Index (EVI2), включая (1) медиану, (2) амплитуду, (3) скорость изменения (если присутствует) и (4) величину изменения медианы EVI2 для тех пикселей, где произошли изменения.

3️⃣ Тип листьев и фенология. Два набора данных определяют тип листьев и фенологию для пикселей, покрытых деревьями.

🌍 GLanCE на GEE

Руководство пользователя с подробной информацией о каждом слое данных: 🔗 ссылка.

❗️В первой версии GLanCE есть 7 из 10 обещанных SDS. Оценка качества классификации почвенно-растительного покрова, а также данные о типах листьях и фенологии будут добавлены в следующих версиях. Кроме того, текущий набор данных включает данные по Северной и Южной Америке, Европе и Океании, а Африка и Азия будут добавлены в начале 2025 года.

Описание методики создания данных:

📖 Friedl M.A. et al. 2022. Medium Spatial Resolution Mapping of Global Land Cover and Land Cover Change Across Multiple Decades From Landsat. Frontiers in Remote Sensing 3. https://doi.org/10.3389/frsen.2022.894571

#данные #GEE #LULC
Данные зонда Juno

Снимки Юпитера, сделанные космическим зондом Juno, полезны для популяризации науки, сообщил ТАСС астрофизик, академик Российской академии наук Дмитрий Бисикало. "Открытый доступ к снимкам позволяет любителям астрономии и художникам со всего мира обрабатывать и изучать изображения Юпитера, делая космос ближе к широким массам", — сказал он.

🛢Данные Juno

Здесь не только полюбившиеся многим снимки камеры JunoCam, но и данные приборов:

* Microwave Radiometer (MWR)
* Ultraviolet Imager/Spectrometer (UVS)
* Jovian InfraRed Auroral Mapper (JIRAM)
* Gravity Science Experiment
* Stellar Reference Unit
* Flux Gate Magnetometer (FGM)
* Jupiter Energetic Particle Detector Instrument (JEDI)
* Jupiter Auroral Distributions Experiment (JADE)
* Radio/Plasma Wave Experiment (WAVES)

📹 Медиагалерея миссии Juno
📸 Фотожурнал миссии Juno

📸 Облака на Юпитере, 19 июля 2024 года

#снимки #данные
This media is not supported in your browser
VIEW IN TELEGRAM
Дамбы возвращаются

1️⃣ О GlobalDamWatch.org — глобальных данных о расположении плотин написано 🔗здесь. Теперь эти данные появились на Google Earth Engine.

🌍 Данные Global Dam Watch (GDW) v1.0 — это глобальные данные о расположении речных плотин и соответствующих водохранилищ. Данные состоят из двух слоев: 1) координат плотин и 2) полигонов границ водохранилищ. Каждый слой имеет атрибуты, среди которых есть идентификатор пары плотина-водохранилище. Кроме того, координаты дамбы находятся внутри полигона “своего” водохранилища.

Версия 1.0 включает 41 145 точек расположения плотин и 35 295 полигонов водохранилищ. 5 850 плотин не связано с водохранилищами. К ним относятся навигационные шлюзы, отводные заграждения, противопаводковые накопительные плотины, строящиеся плотины без заполненных водохранилищ и т. п.

📖 О методике создания базы данных GDW v1.0

2️⃣ Global Dam Tracker (GDAT) — одна из наиболее полных баз данных по плотинам с географической привязкой, включающая более 35 000 плотин по всему миру. Она содержит координаты, спутниковые данные о водосборных площадях и подробную информацию о таких атрибутах, как год завершения строительства, высота, длина, назначение и установленная мощность (capacity) плотины.

GDAT создана на основе существующих глобальных наборов данных и дополнена региональными данными от правительств, некоммерческих организаций и академических источников, особенно в странах Глобального Юга, где детальные данные часто отсутствуют. Данные охватывают плотины, построенные за последние три десятилетия.

📖 Статья с описанием
🛢 Репозиторий на Zenodo
🌍 GDAT на GEE

#данные #GEE
This media is not supported in your browser
VIEW IN TELEGRAM
Ежегодная национальная база данных почвенно-растительного покрова США (Annual National Land Cover Dataset) появилась на Earth Engine:

🗺 Annual NLCD Land Cover Dataset

В GEE сохранена исходная структура данных: шесть слоев ежегодных растровых данных о почвенно-растительном покрове и его изменениях для континентальной части США за 1985–2023 гг. с пространственным разрешением 30 м.

Слои данных:

🔹 Land Cover
🔹 Land Cover Change
🔹 Land Cover Confidence
🔹 Fractional Impervious Surface: доля непроницаемых поверхностей (0–100%) в 30-метровом пикселе. Позволяет классифицировать городскую застройку и пригороды на основе заданных пороговых значений.
🔹 Impervious Descriptor: различает городские, негородские и дорожные покрытия на застроенных территориях.
🔹 Spectral Change Day of Year: определяют сутки, когда происходят значительные спектральные изменения (значения 1–366), что позволяет выявить нарушения (например, пожары), выходящие за рамки сезонных колебаний.

#GEE #данные #США