Прямоугольные участки, расположенные вдоль тихоокеанского побережья Перу, — не сельскохозяйственные поля, а пруды аквакультуры. На снимке спутника Landsat 9 (14 марта 2024 г., естественные цвета) показано устье реки Тумбес, неподалёку от границы Перу и Эквадора. На этот регион приходится большая часть перуанского производства креветок.
Креветочные фермы обычно строятся вдоль берега, где есть лёгкий доступ к солёной воде. Зелёные и белые пруды простираются через всю дельту Тумбес. Пруды на западной стороне дельты, по-видимому, затенены белыми крышками. Затенение повышает урожайность креветок и сокращает потребление воды за счет уменьшения испарения.
Аквакультура креветок появилась в Перу в начале 1970-х годов, и с тех пор получила широкое распространение, которое происходит за счёт замены естественных экосистем. Сейчас креветочные фермы заместили собой 17% мангровых лесов Перу.
#аквакультура #вода #снимки
Креветочные фермы обычно строятся вдоль берега, где есть лёгкий доступ к солёной воде. Зелёные и белые пруды простираются через всю дельту Тумбес. Пруды на западной стороне дельты, по-видимому, затенены белыми крышками. Затенение повышает урожайность креветок и сокращает потребление воды за счет уменьшения испарения.
Аквакультура креветок появилась в Перу в начале 1970-х годов, и с тех пор получила широкое распространение, которое происходит за счёт замены естественных экосистем. Сейчас креветочные фермы заместили собой 17% мангровых лесов Перу.
#аквакультура #вода #снимки
NASA опубликовало первые данные научной миссии PACE [ссылка]
На прошлой неделе NASA опубликовало первые научные данные со спутника Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), запущенного в начале февраля.
PACE оснащён гиперспектрометром Ocean Color Instrument (OCI), который позволит учёным изучать микроскопическую жизнь в океане и, в частности, дифференцировать различные сообщества фитопланктона, что раньше было невозможно. Кроме того, аппарат снабжён поляриметрами для измерения атмосферных аэрозолей. Таким образом, с помощью PACE можно будет исследовать взаимодействие океана и атмосферы.
📸 На первом снимке OCI, полученном 28 февраля 2024 года в океане у побережья Южной Африки, можно увидеть два сообщества фитопланктона. В центре розовым цветом показаны синехококки, а зеленым — пикоэукариоты. Слева показан океан в комбинации “естественные цвета”, а справа — концентрация хлорофилла-а, фотосинтетического пигмента, используемого для определения присутствия фитопланктона.
🛢 Данные PACE
🖥 Запись вебинара “Keeping PACE: Introduction to PACE Mission, Products, and Data Discovery”
#океан #вода #гиперспектр
На прошлой неделе NASA опубликовало первые научные данные со спутника Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), запущенного в начале февраля.
PACE оснащён гиперспектрометром Ocean Color Instrument (OCI), который позволит учёным изучать микроскопическую жизнь в океане и, в частности, дифференцировать различные сообщества фитопланктона, что раньше было невозможно. Кроме того, аппарат снабжён поляриметрами для измерения атмосферных аэрозолей. Таким образом, с помощью PACE можно будет исследовать взаимодействие океана и атмосферы.
📸 На первом снимке OCI, полученном 28 февраля 2024 года в океане у побережья Южной Африки, можно увидеть два сообщества фитопланктона. В центре розовым цветом показаны синехококки, а зеленым — пикоэукариоты. Слева показан океан в комбинации “естественные цвета”, а справа — концентрация хлорофилла-а, фотосинтетического пигмента, используемого для определения присутствия фитопланктона.
🛢 Данные PACE
🖥 Запись вебинара “Keeping PACE: Introduction to PACE Mission, Products, and Data Discovery”
#океан #вода #гиперспектр
Выпущены новые данные миссии SWOT [ссылка]
В марте команда миссии Surface Water and Ocean Topography (SWOT) выпустила новые наборы данных уровней 1 и 2 (pre-validated) по гидрологии и океанографии:
1️⃣ Уровень 1B. Интерферограммы и продукты Single-Look Complex
2️⃣ Уровень 2 High Rate (HR) Products (гидрология)
3️⃣ Уровень 2 Low Rate (LR) Products (океанография)
Low Rate (LR) — глобальные данные с низким пространственным разрешением; High Rate (HR) — данные с высоким пространственным разрешением, для вод суши и прибрежных зон.
🔗 Обзор доступных на сегодня данных SWOT и коллекция обучающих ресурсов по использованию этих данных.
🖥Данные SWOT уже есть на NASA Earthdata Search. Например, можно найти данные для района наводнения в Оренбургской области.
#вода #океан #InSAR #альтиметр
В марте команда миссии Surface Water and Ocean Topography (SWOT) выпустила новые наборы данных уровней 1 и 2 (pre-validated) по гидрологии и океанографии:
1️⃣ Уровень 1B. Интерферограммы и продукты Single-Look Complex
2️⃣ Уровень 2 High Rate (HR) Products (гидрология)
3️⃣ Уровень 2 Low Rate (LR) Products (океанография)
Low Rate (LR) — глобальные данные с низким пространственным разрешением; High Rate (HR) — данные с высоким пространственным разрешением, для вод суши и прибрежных зон.
🔗 Обзор доступных на сегодня данных SWOT и коллекция обучающих ресурсов по использованию этих данных.
🖥Данные SWOT уже есть на NASA Earthdata Search. Например, можно найти данные для района наводнения в Оренбургской области.
#вода #океан #InSAR #альтиметр
Использование прибрежной поверхностной солёности в мониторинге глобальных изменений круговорота воды [ссылка]
Более 40% населения планеты живет в пределах 100 км от побережий морей и океанов. Ожидается, что по мере потепления климата круговорот воды в природе будет меняться. По прогнозам, сток с суши увеличится примерно на 7% , что окажет значительное влияние на прибрежную зону океана. Прибрежная зона может стать ключевым местом для изучения глобальных изменений круговорота воды и его воздействия на физические и биогеохимические процессы. Поскольку реки сбрасывают в океан пресную воду, они влияют на солёность океана. Наблюдения за солёностью in situ и со спутников можно использовать для отслеживания линз пресной воды, выходящих из устьев рек (так называемых речных плюмов), по мере их смешивания с океанскими водами.
Наблюдаемые со спутника значительные колебания солёности поверхности моря (sea surface salinity, SSS) происходят на побережье из года в год (⬆️ синий цвет в океане). В прилегающих районах суши этим колебаниям соответствуют колебания осадков (⬆️ зеленый цвет на суше). Так, большая синяя область у восточного побережья Южной Америки связана с оттоком воды из двух крупных рек: Амазонки и Ориноко, а зелёная область в прилегающей части суши показывает, откуда берутся эти воды с низкой солёностью — из осадков в тропических лесах Амазонки и за её пределами.
Прибрежная SSS может быть использована в качестве индикатора изменений, которые ожидаются в круговороте воды между океанами и континентами. Для обнаружения этих изменений применяются агрегированные глобальные наблюдения SSS в прибрежной зоне ⬇️, полученные с помощью миссий SAC-D Aquarius (2011–2015), SMOS (2010–настоящее время) и SMAP (2015–настоящее время):
🛢 Multi-Mission Optimally Interpolated Sea Surface Salinity Global Dataset V2
#вода #данные
Более 40% населения планеты живет в пределах 100 км от побережий морей и океанов. Ожидается, что по мере потепления климата круговорот воды в природе будет меняться. По прогнозам, сток с суши увеличится примерно на 7% , что окажет значительное влияние на прибрежную зону океана. Прибрежная зона может стать ключевым местом для изучения глобальных изменений круговорота воды и его воздействия на физические и биогеохимические процессы. Поскольку реки сбрасывают в океан пресную воду, они влияют на солёность океана. Наблюдения за солёностью in situ и со спутников можно использовать для отслеживания линз пресной воды, выходящих из устьев рек (так называемых речных плюмов), по мере их смешивания с океанскими водами.
Наблюдаемые со спутника значительные колебания солёности поверхности моря (sea surface salinity, SSS) происходят на побережье из года в год (⬆️ синий цвет в океане). В прилегающих районах суши этим колебаниям соответствуют колебания осадков (⬆️ зеленый цвет на суше). Так, большая синяя область у восточного побережья Южной Америки связана с оттоком воды из двух крупных рек: Амазонки и Ориноко, а зелёная область в прилегающей части суши показывает, откуда берутся эти воды с низкой солёностью — из осадков в тропических лесах Амазонки и за её пределами.
Прибрежная SSS может быть использована в качестве индикатора изменений, которые ожидаются в круговороте воды между океанами и континентами. Для обнаружения этих изменений применяются агрегированные глобальные наблюдения SSS в прибрежной зоне ⬇️, полученные с помощью миссий SAC-D Aquarius (2011–2015), SMOS (2010–настоящее время) и SMAP (2015–настоящее время):
🛢 Multi-Mission Optimally Interpolated Sea Surface Salinity Global Dataset V2
#вода #данные
Global WaterPack — глобальные данные о распространении открытых поверхностных вод за последние 20 лет
🌊 Набор данных о пространственном и временном распределении открытых поверхностных вод Global WaterPack (GWP) основан на многолетних наблюдениях из космоса с помощью приборов MODIS. Данные отражают состояние открытых поверхностных вод в глобальном масштабе на каждые сутки за период времени с 2003 по 2022 год с пространственным разрешением 250 м. Они позволяет анализировать изменение площадей озёр и водохранилищ, циклы замерзания, зоны затопления и др.
📖 Klein, I., Uereyen, S., Sogno, P. et al. Global WaterPack — The development of global surface water over the past 20 years at daily temporal resolution. Sci Data, 11, 472 (2024). https://doi.org/10.1038/s41597-024-03328-7
🔗 GWP на Global CDA
🛢 Скачать данные GWP
#вода #данные
🌊 Набор данных о пространственном и временном распределении открытых поверхностных вод Global WaterPack (GWP) основан на многолетних наблюдениях из космоса с помощью приборов MODIS. Данные отражают состояние открытых поверхностных вод в глобальном масштабе на каждые сутки за период времени с 2003 по 2022 год с пространственным разрешением 250 м. Они позволяет анализировать изменение площадей озёр и водохранилищ, циклы замерзания, зоны затопления и др.
📖 Klein, I., Uereyen, S., Sogno, P. et al. Global WaterPack — The development of global surface water over the past 20 years at daily temporal resolution. Sci Data, 11, 472 (2024). https://doi.org/10.1038/s41597-024-03328-7
🔗 GWP на Global CDA
🛢 Скачать данные GWP
#вода #данные
BELSAR: моно- и бистатические полностью поляриметрические данные авиационного радара L-диапазона для сельского хозяйства и гидрологии
Набор данных BELSAR состоит из разновременных моно- и бистатических данных полностью поляриметрического авиационного радара с синтезированной апертурой высокого разрешения в L-диапазоне, а также одновременных измерений растительности и почвенных биогеофизических переменных, проведенных на полях кукурузы и озимой пшеницы летом 2018 года в Бельгии.
В моностатических радарных системах передатчик и приёмник находятся в одном месте, тогда как в бистатических передатчик и приёмник пространственно разделены. Мультистатические системы включают в себя как моно-, так и бистатические компоненты. Самая простая мультистатическая система состоит из активного моностатического датчика и пассивного бистатического. Эти системы позволяют получать информацию о многомерных эффектах рассеяния, используя различные геометрии и конфигурации, обеспечивая дополнительную информацию, по сравнению с той, которую дают моностатические радарные системы.
В связи с этим Европейское космическое агентство профинансировало проект BELSAR-Campaign — кампанию воздушных и полевых измерений, которая проводилась в течение вегетационного сезона 2018 года в Бельгии. Полевые измерения проводились во время и после вегетационного периода на 10 полях кукурузы и 10 полях озимой пшеницы синхронно с получением радарных данных.
📖 Bouchat, J., Tronquo, E., Orban, A., de Macedo, K. A. C., Davidson, M., Verhoest, N. E. C., & Defourny, P. (2024). The BELSAR dataset: Mono- and bistatic full-pol L-band SAR for agriculture and hydrology. Scientific Data, 11(1). https://doi.org/10.1038/s41597-024-03320-1
Интегрированный набор данных доступен непосредственно на сайте figshare, а данные BELSAR-Campaign — через FTP после подачи запроса на доступ к данным в службу ESA Earth Online.
🛢 Данные и код на figshare
📸 Район сбора данных BELSAR
#данные #сельхоз #SAR #вода
Набор данных BELSAR состоит из разновременных моно- и бистатических данных полностью поляриметрического авиационного радара с синтезированной апертурой высокого разрешения в L-диапазоне, а также одновременных измерений растительности и почвенных биогеофизических переменных, проведенных на полях кукурузы и озимой пшеницы летом 2018 года в Бельгии.
В моностатических радарных системах передатчик и приёмник находятся в одном месте, тогда как в бистатических передатчик и приёмник пространственно разделены. Мультистатические системы включают в себя как моно-, так и бистатические компоненты. Самая простая мультистатическая система состоит из активного моностатического датчика и пассивного бистатического. Эти системы позволяют получать информацию о многомерных эффектах рассеяния, используя различные геометрии и конфигурации, обеспечивая дополнительную информацию, по сравнению с той, которую дают моностатические радарные системы.
В связи с этим Европейское космическое агентство профинансировало проект BELSAR-Campaign — кампанию воздушных и полевых измерений, которая проводилась в течение вегетационного сезона 2018 года в Бельгии. Полевые измерения проводились во время и после вегетационного периода на 10 полях кукурузы и 10 полях озимой пшеницы синхронно с получением радарных данных.
📖 Bouchat, J., Tronquo, E., Orban, A., de Macedo, K. A. C., Davidson, M., Verhoest, N. E. C., & Defourny, P. (2024). The BELSAR dataset: Mono- and bistatic full-pol L-band SAR for agriculture and hydrology. Scientific Data, 11(1). https://doi.org/10.1038/s41597-024-03320-1
Интегрированный набор данных доступен непосредственно на сайте figshare, а данные BELSAR-Campaign — через FTP после подачи запроса на доступ к данным в службу ESA Earth Online.
🛢 Данные и код на figshare
📸 Район сбора данных BELSAR
#данные #сельхоз #SAR #вода
Картографирование наводнений с помощью радаров: обзор методов и наборов данных
📖 Amitrano, D., Di Martino, G., Di Simone, A., & Imperatore, P. (2024). Flood Detection with SAR: A Review of Techniques and Datasets. Remote Sensing, 16(4), 656. https://doi.org/10.3390/rs16040656
Дистанционное зондирование Земли из космоса при помощи радаров оказывает большую помощь в борьбе с наводнениями и смягчении их последствий. В отличие от оптических датчиков, радары позволяют получать данные в условиях облачности, что обеспечивает регулярный мониторинг зон затопления.
Для картографирования и мониторинга наводнений применяется широкий спектр подходов: пороговые методы, нечёткая логика, машинное обучение, слияние данных (data fusion) и др. Оценить точность и эффективность различных методов картографирования наводнений позволяют справочные наборы данных. Приведен обзор открытых наборов радарных данных, которые охватывают события, связанные с наводнениями.
Мониторинг наводнений при помощи радаров испытывает трудности в районах городской застройки и густой растительности, где сложные механизмы рассеяния могут помешать точному выделению зон затопления. Эти и другие проблемы, а также перспективы развития методов картографирования наводнений на основе радарных данных обсуждаются в данной работе.
Обзор методов картографирования поверхностных водоёмов и зон затопления с помощью мультиспектральных оптических спутниковых сенсоров приведен здесь.
📊 Архитектура нейронной сети Siam-DWENet, предназначенной для извлечения высокоуровневых характеристик водных объектов из радарных снимков, сделанных до и после наводнения.
#обзор #SAR #наводнение #вода
📖 Amitrano, D., Di Martino, G., Di Simone, A., & Imperatore, P. (2024). Flood Detection with SAR: A Review of Techniques and Datasets. Remote Sensing, 16(4), 656. https://doi.org/10.3390/rs16040656
Дистанционное зондирование Земли из космоса при помощи радаров оказывает большую помощь в борьбе с наводнениями и смягчении их последствий. В отличие от оптических датчиков, радары позволяют получать данные в условиях облачности, что обеспечивает регулярный мониторинг зон затопления.
Для картографирования и мониторинга наводнений применяется широкий спектр подходов: пороговые методы, нечёткая логика, машинное обучение, слияние данных (data fusion) и др. Оценить точность и эффективность различных методов картографирования наводнений позволяют справочные наборы данных. Приведен обзор открытых наборов радарных данных, которые охватывают события, связанные с наводнениями.
Мониторинг наводнений при помощи радаров испытывает трудности в районах городской застройки и густой растительности, где сложные механизмы рассеяния могут помешать точному выделению зон затопления. Эти и другие проблемы, а также перспективы развития методов картографирования наводнений на основе радарных данных обсуждаются в данной работе.
Обзор методов картографирования поверхностных водоёмов и зон затопления с помощью мультиспектральных оптических спутниковых сенсоров приведен здесь.
📊 Архитектура нейронной сети Siam-DWENet, предназначенной для извлечения высокоуровневых характеристик водных объектов из радарных снимков, сделанных до и после наводнения.
#обзор #SAR #наводнение #вода
Предварительный анализ возможности использования данных космического лидара GEDI для мониторинга уровня внутренних водоёмов
📖 Hamoudzadeh, A., Ravanelli, R., & Crespi, M. (2023). GEDI DATA WITHIN GOOGLE EARTH ENGINE: PRELIMINARY ANALYSIS OF A RESOURCE FOR INLAND SURFACE WATER MONITORING. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-1–2023, 131–136. https://doi.org/10.5194/isprs-archives-xlviii-m-1-2023-131-2023
Точность оценок уровня поверхностных вод выполнялась для четырёх озер на севере Италии путем сравнения с результатами наземных измерений.
Для оценки точности альтиметрических данных GEDI использован двухэтапный метод удаления выбросов. На первом этапе для отсеивания данных с низкой точностью использовались метаданные GEDI. На втором применялся тест 3NMAD (нормализованное медианное абсолютное отклонение). Удаление выбросов привело к удалению от 80–87% данных.
После удаления выбросов, среднее стандартное отклонение составило 0,36 м, среднее значение NMAD — 0,38 м. Это, по мнению авторов, подтверждает перспективность использования альтиметрических данных GEDI L2A для мониторинга внутренних водоёмов.
Данные GEDI L2A на Google Earth Engine:
* GEDI L2A Vector Canopy Top Height (Version 2)
* GEDI L2A Table Index
* GEDI L2A Raster Canopy Top Height (Version 2)
Идея интересная. Смущает, правда, что удалённые 80–87% данных названы “выбросами” (outliers).
#лидар #альтиметр #GEE #вода
📖 Hamoudzadeh, A., Ravanelli, R., & Crespi, M. (2023). GEDI DATA WITHIN GOOGLE EARTH ENGINE: PRELIMINARY ANALYSIS OF A RESOURCE FOR INLAND SURFACE WATER MONITORING. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-1–2023, 131–136. https://doi.org/10.5194/isprs-archives-xlviii-m-1-2023-131-2023
Точность оценок уровня поверхностных вод выполнялась для четырёх озер на севере Италии путем сравнения с результатами наземных измерений.
Для оценки точности альтиметрических данных GEDI использован двухэтапный метод удаления выбросов. На первом этапе для отсеивания данных с низкой точностью использовались метаданные GEDI. На втором применялся тест 3NMAD (нормализованное медианное абсолютное отклонение). Удаление выбросов привело к удалению от 80–87% данных.
После удаления выбросов, среднее стандартное отклонение составило 0,36 м, среднее значение NMAD — 0,38 м. Это, по мнению авторов, подтверждает перспективность использования альтиметрических данных GEDI L2A для мониторинга внутренних водоёмов.
Данные GEDI L2A на Google Earth Engine:
* GEDI L2A Vector Canopy Top Height (Version 2)
* GEDI L2A Table Index
* GEDI L2A Raster Canopy Top Height (Version 2)
Идея интересная. Смущает, правда, что удалённые 80–87% данных названы “выбросами” (outliers).
#лидар #альтиметр #GEE #вода
Моделирование водной эрозии с помощью модели RUSLE в масштабе сельскохозяйственного предприятия
📖 В работе описан процесс моделирования водной эрозии почвенного покрова в масштабе сельскохозяйственного предприятия с использованием уравнения RUSLE на основе наземных данных и данных ДЗЗ из космоса.
Исходные данные:
🔹 цифровая модель рельефа FABDEM
🔹 спутниковые снимки Sentinel-2
🔹 данные наземной метеостанции
🔹 цифровые карты почвы
🔹 цифровая карта типов землепользования
Сложнее всего, обычно, найти цифровые карты почвы. Они нужны для вычисления фактора эродируемости почвы (K). В эти данные входит содержание песка (SAN), ила (SIL) и глины (CLA) в процентах, а также содержание органических веществ в почве (OM) в процентах. В работе карта почв построена по данным наземных обследований.
В качестве источника данных для расчёта фактора природоохранной практики (P) использовалась карта типов землепользования (пахотные земли, пастбища и кустарник, водно-болотные угодья, лес), построенная для данного сельхозпредприятия.
📊 Алгоритм вычисления факторов уравнения RUSLE
#почва #вода
📖 В работе описан процесс моделирования водной эрозии почвенного покрова в масштабе сельскохозяйственного предприятия с использованием уравнения RUSLE на основе наземных данных и данных ДЗЗ из космоса.
Исходные данные:
🔹 цифровая модель рельефа FABDEM
🔹 спутниковые снимки Sentinel-2
🔹 данные наземной метеостанции
🔹 цифровые карты почвы
🔹 цифровая карта типов землепользования
Сложнее всего, обычно, найти цифровые карты почвы. Они нужны для вычисления фактора эродируемости почвы (K). В эти данные входит содержание песка (SAN), ила (SIL) и глины (CLA) в процентах, а также содержание органических веществ в почве (OM) в процентах. В работе карта почв построена по данным наземных обследований.
В качестве источника данных для расчёта фактора природоохранной практики (P) использовалась карта типов землепользования (пахотные земли, пастбища и кустарник, водно-болотные угодья, лес), построенная для данного сельхозпредприятия.
📊 Алгоритм вычисления факторов уравнения RUSLE
#почва #вода
Водохранилище Трес-Мариас
В центре снимка, сделанного с борта Международной космической станции (ISS070-E-51989, 27 декабря 2023 года), водохранилище Трес-Мариас — искусственный водоём, питаемый рекой Сан-Франциску в бразильском штате Минас-Жерайс. Светло-голубые оттенки на его поверхности обусловлены солнечным бликом, возникающим, когда солнечный свет отражается от гладкой воды под тем же углом, под которым её рассматривает камера.
Типы почвенно-растительного покрова на снимке различны, и в них преобладают яркие цвета. Большая часть открытой земли (незасеянные поля, грунтовые дороги) имеет яркие оттенки красного и жёлтого. Такая окраска обусловлена почвами, богатыми железом и алюминием, которые при выветривании могут приобретать яркие цвета.
Доступ к пресной воде для орошения позволяет вести сельское хозяйство в районе водохранилища. На участках с красными и зелёными тонами можно различить поля с центральным орошением и участки с прямыми границами. Оранжево-коричневая контурная линия, проходящая по береговой линии водохранилища, отмечает места, где уровень воды раньше был выше.
#снимки #вода #почва
В центре снимка, сделанного с борта Международной космической станции (ISS070-E-51989, 27 декабря 2023 года), водохранилище Трес-Мариас — искусственный водоём, питаемый рекой Сан-Франциску в бразильском штате Минас-Жерайс. Светло-голубые оттенки на его поверхности обусловлены солнечным бликом, возникающим, когда солнечный свет отражается от гладкой воды под тем же углом, под которым её рассматривает камера.
Типы почвенно-растительного покрова на снимке различны, и в них преобладают яркие цвета. Большая часть открытой земли (незасеянные поля, грунтовые дороги) имеет яркие оттенки красного и жёлтого. Такая окраска обусловлена почвами, богатыми железом и алюминием, которые при выветривании могут приобретать яркие цвета.
Доступ к пресной воде для орошения позволяет вести сельское хозяйство в районе водохранилища. На участках с красными и зелёными тонами можно различить поля с центральным орошением и участки с прямыми границами. Оранжево-коричневая контурная линия, проходящая по береговой линии водохранилища, отмечает места, где уровень воды раньше был выше.
#снимки #вода #почва