Forwarded from Machinelearning
RLtools - библиотека глубокого обучения с подкреплением (Deep Reinforcement Learning, DRL) с высокой скоростью работы для разработки и исследования алгоритмов DL.
RLtools написана на C++ и позволяет проводить обучение и вывод моделей DRL на РС, мобильных устройствах и embedded-системах. В экспериментальном тестировании, библиотека обучила алгоритм RL непосредственно на микроконтроллере.
Библиотека поддерживает алгоритмы DRL: TD3, PPO, Multi-Agent PPO и SAC и предлагает набор примеров, демонстрирующих использование этих алгоритмов для решения задач управления на примерах управления маятником, гоночным автомобилем и роботом-муравьем MuJoCo.
Код реализации алгоритмов:
Благодаря оптимизации и использования аппаратного ускорения RLtools в 76 раз быстрее других библиотек. Например, на MacBook Pro с M1 RLtools может обучить модель SAC (управление маятником) за 4 секунды.
Библиотеку можно использовать на Linux, macOS, Windows, iOS, Teensy, Crazyflie, ESP32 и PX4.
RLtools предоставляет Python API, с которым можно использовать библиотеку из Python-кода. API RLtools совместим с библиотекой симуляции сред Gym.
Проекты, использующие RLtools:
# Clone and checkout
git clone https://github.com/rl-tools/example
cd example
git submodule update --init external/rl_tools
# Build and run
mkdir build
cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
cmake --build .
./my_pendulum
@ai_machinelearning_big_data
#AI #ML #DL #RTools #Github
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8❤5🥰3😨3
Forwarded from Python/ django
This media is not supported in your browser
VIEW IN TELEGRAM
Новый Function (fxn) — фреймворк, который компилирует Python-функции в нативный код с производительностью, сравнимой с Rust.
🧠 Как это работает?
- Использует символическое трассирование на CPython для анализа функций
- Генерирует промежуточное представление (IR)
- Транслирует IR в C++ или Rust, а затем компилирует в бинарный код
- Поддерживает платформы: Linux, Android, WebAssembly и др.
📦 Пример:
@compile
def fma(x: float, y: float, z: float) -> float:
return x * y + z
После компиляции вы получаете нативный бинарник, который можно запускать без интерпретатора Python.
🔗 Подробнее
🔗 Github
@pythonl
#Python #Rust #fxn #Compiler #Performance #AI #ML #Wasm
Please open Telegram to view this post
VIEW IN TELEGRAM
👍29😁10❤5🔥4🥴4🥰2🤬2
Forwarded from Machinelearning
OpenAI представляет Codex — облачного агента для генерации кода, способного выполнять множество задач параллельно.
В основе — модель codex-1.
🧠 Ключевые особенности:
• Codex работает прямо в браузере
• Поддерживает многозадачность: можно одновременно проверять код, задавать вопросы и переключаться между задачами
• Построен на **новой модели Codex-1** — самой мощной модели для кодинга от OpenAI
• Интеграция с GitHub — можно подключить свой аккаунт, и агент будет работать с вашими репозиториями
🚀 Codex — это шаг в сторону полуавтоматизированной разработки, где ИИ способен выполнять рутинную и аналитическую работу без постоянного контроля со стороны разработчика.
📅 Запуск ожидается уже сегодня.
▪ Релиз: https://openai.com/index/introducing-codex/
@ai_machinelearning_big_data
#OpenAI #Codex #AI #CodeAutomation #DevTools
В основе — модель codex-1.
🧠 Ключевые особенности:
• Codex работает прямо в браузере
• Поддерживает многозадачность: можно одновременно проверять код, задавать вопросы и переключаться между задачами
• Построен на **новой модели Codex-1** — самой мощной модели для кодинга от OpenAI
• Интеграция с GitHub — можно подключить свой аккаунт, и агент будет работать с вашими репозиториями
🚀 Codex — это шаг в сторону полуавтоматизированной разработки, где ИИ способен выполнять рутинную и аналитическую работу без постоянного контроля со стороны разработчика.
📅 Запуск ожидается уже сегодня.
▪ Релиз: https://openai.com/index/introducing-codex/
@ai_machinelearning_big_data
#OpenAI #Codex #AI #CodeAutomation #DevTools
👍13🤣9❤3🥰2🖕2💊1
Forwarded from Machinelearning
Новый XChat теперь доступен с шифрованием, самоуничтожением сообщений, возможностью отправки любых типов файлов и поддержкой аудио- и видеозвонков.
Приложение создано на Rust и использует шифрование (как в Биткойн) и новую архитектуру.
А еще можно звонить без номера телефона.
@ai_machinelearning_big_data
#elonmusk #ai #news #ml #grok
Please open Telegram to view this post
VIEW IN TELEGRAM
👍24😁11❤9🔥6🤣5🥰1👏1🎉1🤝1
Forwarded from Machinelearning
Позволяет можно запускать и управлять сразу несколькими AI-агентами для кодинга: Claude Code, Gemini CLI, Codex — всё в одном дашборде.
- параллельный запуск агентов
- визуальный трекинг задач
- переключение между моделями на лету
— встроенный review и контроль над результатами
— backend на Rust, frontend на React, всё разворачивается локально
Полностью open-source
@ai_machinelearning_big_data
#ai #aiagent #opensource #Claude #Gemini
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11🤣9👍5🔥3🖕2🥰1🤬1
Forwarded from Machinelearning
Stack Overflow Developer Survey — это крупнейшее ежегодное исследование среди разработчиков по всему миру, которое проводит платформа Stack Overflow.
В 15‑й год в опросе приняли участие более 49 000 разработчиков из 177 стран. Опрос охватил 62 вопроса по 314 технологиям
76 % респондентов — профессиональные разработчики, большинство из них (66 %) — в возрасте 25–44 лет
- 80 % пишут код с помощью AI.
- Но лишь 29 % доверяют результатам ИИ (в 2024 было 40 %).
- 66 % тратят больше времени на отладку AI-кода, чем на его написание.
🏆 Claude Sonnet от Anthropic стала самой уважаемой LLM-моделью года — её отметили 67.5 % опрошенных.
💡 Но по желанию использовать на первом месте всё ещё OpenAI GPT — 51.2 % хотят с ней работать чаще всего.
- Cargo признан самым уважаемым DevOps‑инструментом (обогнал даже Terraform).
- Rust стабильно в топе любимых языков.
💡 Учёба и рост:
- 69 % изучают новые технологии, 44 % — с помощью AI.
- 36 % учат код ради AI-задач.
👨💻 VS Code лидирует, но Neovim — кумир:
- VS Code — самый используемый редактор.
- Neovim — самый «перспективный».
🧑🤝🧑 Сообщества & платформы
- 84 % разработчиков активно использовали Stack Overflow ( верится с трудом) в течение года (GitHub 67 %, YouTube 61 %)
- В опросе выяснилось: 35 % посещают SO из‑за проблем, связанных с AI‑кодом — ищут проверенную людьми информацию
📉 Меньше участников:
- В 2025 — 49k респондентов (в 2023 было 90k).
- Разработчики всё чаще критикуют перекос в сторону AI.
😕 Удовлетворённость работой & зарплаты
- Предыдущий опрос показал, что 80 % разработчиков были либо неудовлетворены, либо в состоянии «разочарованности» на работе. Интересно, как изменились показатели в 2025 году.
- В 2024 году выяснилось, что гибкость и зарплата перестали вносить равный вклад в удовлетворённость, теперь зарплата выше оказывает сильный эффект для топ‑25 % зарплатной шкалы
.- К примеру, мобильные и back‑end разработчики в UK и Нидерландах стали более удоволетворены работой за счёт более высоких зарплат
📎 Отчёт целиком: https://survey.stackoverflow.co/2025
@ai_machinelearning_big_data
#ai #stackoverflow
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤8🔥5🥰1
🚀 vivo открывает исходники ядра BlueOS (Blue River) на Rust!
📅 23 июля 2025 г. на конференции OpenAtom Open Source в Пекине вице-президент vivo и руководитель vivo AI Global Research Institute объявил о полной открытости ядра BlueOS, написанного на Rust.
💡 Ключевые особенности BlueOS:
Интеграция AI Engine: архитектура глубоко сочетается с фреймворком Blue Heart для поддержки продвинутых AI-алгоритмов и мультимодального ввода
Сина Файненс
Плавность и высокая производительность: полностековые оптимизации в вычислениях, хранении и рендеринге для максимальной отзывчивости системы
Сина Файненс
Родная безопасность памяти: благодаря Rust устраняется до 70 % уязвимостей, связанных с неверным управлением памятью, на самом низком уровне
Сина Файненс
🔗 Узнайте больше → https://blueos.vivo.com/activity/details?id=94&data=blueRiver (включайте автоперевод)
🔗Github: https://github.com/vivoblueos/kernel
#BlueOS #BlueRiverOS #Rust #OpenSource #AI #vivo
📅 23 июля 2025 г. на конференции OpenAtom Open Source в Пекине вице-президент vivo и руководитель vivo AI Global Research Institute объявил о полной открытости ядра BlueOS, написанного на Rust.
💡 Ключевые особенности BlueOS:
Интеграция AI Engine: архитектура глубоко сочетается с фреймворком Blue Heart для поддержки продвинутых AI-алгоритмов и мультимодального ввода
Сина Файненс
Плавность и высокая производительность: полностековые оптимизации в вычислениях, хранении и рендеринге для максимальной отзывчивости системы
Сина Файненс
Родная безопасность памяти: благодаря Rust устраняется до 70 % уязвимостей, связанных с неверным управлением памятью, на самом низком уровне
Сина Файненс
🔗 Узнайте больше → https://blueos.vivo.com/activity/details?id=94&data=blueRiver (включайте автоперевод)
🔗Github: https://github.com/vivoblueos/kernel
#BlueOS #BlueRiverOS #Rust #OpenSource #AI #vivo
❤16🔥10🥰3🤣2👍1😁1
📐 gpt-oss работает на специальном формате промптов — Harmony, и без него просто не будет выдавать корректные ответы.
Зачем нужен Harmony?
Этот формат нужен для:
— 🧠 генерации chain of thought рассуждений
— 🔧 корректного вызова функций и использования инструментов
— 📦 вывода в разные каналы: обычный ответ, reasoning, tool call
— 🗂️ поддержки tool namespaces и иерархических инструкций
💡 Harmony имитирует OpenAI Responses API, так что если вы с ним работали — будет легко освоиться.
👉 Если вы используете gpt-oss через HuggingFace, Ollama или vLLM, волноваться не нужно — формат уже встроен.
Но если строите свой inference стек — обязательно изучите [гайд по Harmony](https://github.com/openai/harmony).
Без него модель просто не будет работа
💻 GitHub: https://github.com/openai/harmony
#AI #MusicGen #OpenAI #Harmony
Зачем нужен Harmony?
Этот формат нужен для:
— 🧠 генерации chain of thought рассуждений
— 🔧 корректного вызова функций и использования инструментов
— 📦 вывода в разные каналы: обычный ответ, reasoning, tool call
— 🗂️ поддержки tool namespaces и иерархических инструкций
💡 Harmony имитирует OpenAI Responses API, так что если вы с ним работали — будет легко освоиться.
👉 Если вы используете gpt-oss через HuggingFace, Ollama или vLLM, волноваться не нужно — формат уже встроен.
Но если строите свой inference стек — обязательно изучите [гайд по Harmony](https://github.com/openai/harmony).
Без него модель просто не будет работа
💻 GitHub: https://github.com/openai/harmony
#AI #MusicGen #OpenAI #Harmony
👍12🔥6❤4🌭3🥰1
Forwarded from Machinelearning
Метод преодоления "барьера сортировки" для задач кратчайшего пути в ориентированных графах.
Группа исследователей из университетов Синьхуа, Стенфорда и Института Макса Планика представили детерминированный алгоритм для решения задачи SSSP в ориентированных графах с неотрицательными вещественными весами, который работает за время, пропорциональное числу ребер, умноженному на логарифмический множитель, который растет медленнее, чем обычный логарифм.
Проблема поиска кратчайшего пути от одной вершины до всех остальных (SSSP) — одна из фундаментальных в теории графов, и её история тянется с 50-х годов прошлого века. Классический алгоритм Дейкстры, в связке с продвинутыми структурами данных, решает эту задачу за время, которое примерно пропорционально сумме числа рёбер и произведения числа вершин на логарифм от их же числа.
Именно этот множитель - число вершин, умноженное на логарифм, долгое время считался теоретическим минимумом, так как в своей основе алгоритм Дейкстры побочно сортирует вершины по расстоянию от источника. Этот предел известен как «барьер сортировки» и казался непреодолимым.
Алгоритм Дейкстры на каждом шаге выбирает из "границы" - множества еще не обработанных вершин ту, что находится ближе всего к источнику. Это и создает узкое место, так как размер границы может достигать величины, сопоставимой с общим числом вершин в графе, и на каждом шаге требуется находить минимум.
Алгоритм Беллмана-Форда, в свою очередь, не требует сортировки, но его сложность пропорциональна числу ребер, умноженному на количество шагов, что слишком долго.
Вместо того чтобы поддерживать полную отсортированную границу, алгоритм фокусируется на ее сокращении. А если граница слишком велика, то запускается несколько шагов алгоритма Беллмана-Форда из ее вершин.
Это позволяет найти точное расстояние до некоторой части вершин, чьи кратчайшие пути коротки. Длинные же пути должны проходить через одну из "опорных" вершин, которых оказывается значительно меньше, чем вершин в исходной границе. Таким образом, сложная работа концентрируется только на этом небольшом наборе опорных точек.
Он рекурсивно разбивает задачу на несколько уровней. На каждом уровне применяется вышеописанная техника сокращения границы, что позволяет значительно уменьшить объем работы на каждую вершину, поскольку логарифмический множитель эффективно делится на другой, более медленно растущий логарифмический член.
В итоге, путем подбора внутренних параметров алгоритма, которые являются специфическими функциями от логарифма числа вершин, и достигается итоговая временная сложность, пропорциональная числу ребер, умноженному на этот новый, более медленно растущий логарифмический множитель.
— Быстрее решаются задачи в навигации, графах дорог, сетях и планировании.
— Доказано, что Дейкстра — не предел, и можно ещё ускорять поиск кратчайших путей.
@ai_machinelearning_big_data
#AI #ML #Sorting #Graphs #Algorithm
Please open Telegram to view this post
VIEW IN TELEGRAM
👍31🔥14❤9🤯5🥰2😁1🤔1