VIRSUN
14.3K subscribers
477 photos
269 videos
2 files
281 links
📥 در کانال @rss_ai_ir هر روز: 🔹 جدیدترین خبرهای AI و فناوری
🔹 کانال توسط اساتید هوش مصنوعی مدیریت میشود
🗯اولویت ما هوش مصنوعی در صنعت میباشد اما نیم نگاهی به موارد دیگر در این زمینه داریم

ارتباط با ادمین 1:
@Ad1_rss_ai_ir
加入频道
📊 نتایج بنچمارک MCP-Universe

تست‌های تازه‌ی MCP-Universe یک برنده‌ی مشخص داشتند: GPT-5 با اختلاف زیاد در صدر قرار گرفت:

🏆 نرخ موفقیت (SR) → ۴۳.۷٪

🏆 امتیاز ارزیابان (AE) → ۶۰.۲٪

📈 در تمام حوزه‌ها پیشتاز است، به جز Browser Automation که کمی بهتر از آن Grok-4 عمل کرده.



---

🔎 جزئیات بر اساس حوزه‌ها:

تحلیل مالی (Financial Analysis) → رکورد GPT-5 با ۶۷.۵٪؛ فاصله‌ی چشمگیر از بقیه.

طراحی سه‌بعدی (3D Designing) → باز هم صدرنشین با ۵۲.۶٪.

مدیریت مخزن کد (Repository Management) → GPT-5 با ۳۰.۳٪ به‌وضوح بالاتر از رقباست.

اتوماسیون مرورگر (Browser Automation) → این‌جا شگفتی رقم خورد: Grok-4 با ۴۱.۰٪ جلوتر از GPT-5 (۳۵.۹٪).



---

🟢 در میان مدل‌های متن‌باز (Open-Source):

♻️مدل GLM-4.5 بهترین عملکرد را داشت با ۲۴.۷٪ SR و ۴۱.۲٪ AE.

♻️مدل Kimi-K2 با وجود تبلیغات زیاد درباره‌ی آموزش ویژه برای MCP، تنها به ۱۹٪ SR رسید.



---

⚠️ نکته‌ی مهم: حتی رهبر جدول یعنی GPT-5 هم نتوانست از مرز ۵۰٪ کیفیت نهایی عبور کند. این نشان می‌دهد که تعامل LLMها با سرورهای MCP هنوز راه زیادی تا بلوغ کامل دارد، و این وظایف واقعاً پیچیده و چندلایه هستند.

@rss_ai_ir
#هوش_مصنوعی #LLM #MCP #GPT5 #Benchmarks
15😁11🔥9👍8🎉8
This media is not supported in your browser
VIEW IN TELEGRAM
🆕 ابزار جدید Hugging Face: AI Sheets

⛔️جدول‌ها حالا هوشمند شدند!

✳️مجموعه Hugging Face معرفی کرد AI Sheets، یک ابزار بدون کدنویسی برای ساخت و پردازش داده‌های جدولی با کمک هوش مصنوعی:

🔹 ظاهر شبیه اکسل، اما به جای فرمول‌ها از هزاران مدل استفاده می‌کند.
🔹 پشتیبانی از مدل‌های OpenAI-API و مدل‌های لوکال.
🔹 امکان افزودن ستون با پرامپت‌ها، ویرایش داده‌ها به صورت دستی یا با لایک/دیسلایک.
🔹 قابل اجرا به صورت آنلاین یا لوکال (Docker / pnpm).
🔹 کاملاً اپن‌سورس (Apache-2.0) و قابل ادغام در هر پایپ‌لاین.
🔹 مناسب برای کلاسیفیکیشن، تغییر داده‌ها، تولید داده‌های مصنوعی و تست حس و vibe مدل‌ها.

⚡️ نسخه آزمایشی در دسترس است.

#هوش_مصنوعی #بدون_کدنویسی #دیتاست #HuggingFace #LLM #AI


@rss_ai_ir
4👍1👏1🙏1
🧠 مدل ThinkDial: کنترل باز و دقیق بر میزان استدلال در LLMها

پژوهشگران با معرفی ThinkDial اولین چارچوب بازمتن (Open-Recipe) برای کنترل سطح استدلال در مدل‌های زبانی بزرگ (LLMها) را ارائه کرده‌اند. این چارچوب همان چیزی است که پیش‌تر در سیستم‌های اختصاصی مثل GPT-OSS دیده بودیم، اما حالا به شکل باز در دسترس پژوهشگران قرار گرفته است.

🔑 ایده اصلی
به جای اینکه مدل همیشه با حداکثر توان استدلال کند (که هزینه محاسباتی بالایی دارد)، ThinkDial به شما اجازه می‌دهد بین حالت‌های مختلف عملیات جابه‌جا شوید:
✳️حالت Medium: کاهش ۵۰٪ تعداد توکن‌ها، با کمتر از ۱۰٪ افت کارایی
✳️حالت Low: کاهش ۷۵٪ توکن‌ها، با کمتر از ۱۵٪ افت کارایی
✳️این یعنی شما می‌توانید سطح استدلال را بر اساس نیاز پروژه (مثلاً چت سبک، تحلیل سریع یا پژوهش دقیق) تنظیم کنید.

نوآوری‌ها

1. Budget-Mode Supervised Fine-tuning → تنظیم دقیق مدل برای سطوح مختلف مصرف محاسباتی.


2. Budget-Aware Reinforcement Learning → یادگیری تقویتی دو‌مرحله‌ای برای هماهنگی دقت و هزینه.


3. Leak Penalty → مکانیزمی که مانع از آن می‌شود مدل استدلال را به بخش نهایی پاسخ منتقل کند (یعنی واقعاً تعداد توکن‌های استدلال کاهش یابد).



📊 مزیت‌ها برای صنعت

♻️کاهش هزینه اجرای مدل‌ها در دیتاسنترها.
♻️امکان استقرار مدل روی دستگاه‌های با منابع محدود.
♻️انعطاف‌پذیری بالا برای کاربردهای مختلف: از دستیارهای گفت‌وگویی سبک گرفته تا تحلیل‌های پیچیده مالی یا علمی.


📄 مقاله: arXiv
🖥️ مدل‌ها و کد: HuggingFace

#هوش_مصنوعی #LLM #بهینه‌سازی #استدلال_ماشین #ThinkDial
@rss_ai_ir
👍1🔥1👏1
مفهوم دیپلوی در مدل‌های زبانی بزرگ یعنی رساندن مدل از آزمایشگاه به محیط واقعیِ تولید، با تمرکز همزمان بر کیفیت، سرعت و هزینه 🚀

🧭 اهداف کلیدی در دیپلوی

❇️تضمین تأخیر پایین (Latency/SLA)، پایداری و مقیاس‌پذیری
❇️کنترل هزینه به‌ازای هر توکن و مصرف GPU/CPU
❇️پایش ایمنی محتوا و حفظ حریم خصوصی داده‌ها

🏗 الگوهای دیپلوی

✳️سرویس ابری مدیریت‌شده: راه‌اندازی سریع، اما وابستگی و هزینه متغیر
✳️استقرار خودمیزبان: کنترل کامل و بهینه‌سازی عمیق، اما نیازمند تخصص عملیاتی
✳️معماری هیبرید: استفاده از مزیت هر دو رویکرد برای سناریوهای حساس به داده

🧩 آماده‌سازی مدل

انتخاب اندازه و کانتکست‌لِن مناسب نیاز کسب‌وکار
کوانتیزه‌سازی (INT8/4) و دیستیل برای کاهش حافظه و افزایش سرعت
فاین‌تیون سبک با LoRA/PEFT برای شخصی‌سازی کم‌هزینه
یکپارچه‌سازی با ابزارها و بازیگرها (توابع، جستجو، پایگاه دانش/RAG)

⚡️ سروینگ و بهینه‌سازی اجرا

بهره‌گیری از فریم‌ورک‌های سروینگ (مانند vLLM، TGI، TensorRT-LLM) برای مدیریت هم‌زمانی و صف درخواست‌ها
استفاده از تکنیک‌های Continuous Batching، KV-Cache، Flash-Attention، Speculative Decoding برای افزایش توکن‌برثانیه
تنظیم طول پاسخ، دمای نمونه‌برداری و حداکثر توکن‌ها برای کنترل کیفیت/هزینه

🧮 ظرفیت‌سنجی و منابع

♨️برآورد حافظه وزن‌ها متناسب با اندازه مدل و دقت عددی (مثلاً حدوداً: 7B با INT8 ≈ نزدیک 7–8GB؛ با FP16 ≈ حدود 14–16GB)
♨️درنظرگرفتن حافظه KV-Cache که با طول متن، تعداد درخواست‌های هم‌زمان و دقت عددی رشد می‌کند
♨️سنجش عملی با بار مصنوعی برای رسیدن به هدف‌های Tokens/s و هم‌زمانی

🔐 ایمنی، امنیت و انطباق

💢احراز هویت، ریت‌لیمیت و جداسازی محیط اجرا
💢فیلترینگ محتوایی، ممیزی لاگ‌ها و حذف داده‌های حساس
💢پایبندی به مقررات (حریم خصوصی و نگهداری داده)

🧪 ارزیابی و تضمین کیفیت

❇️طراحی Golden Set از پرامپت‌ها و پاسخ‌های مرجع
❇️اجرای ارزیابی خودکارِ کیفیّت، واقع‌نمایی RAG و آزمون‌های رگرسیونی قبل از هر انتشار
❇️پایش پس از دیپلوی با A/B تست و تحلیل لاگ برای بهبود پرامپت و ریتونینگ

🧰 قابلیت مشاهده و نگه‌داری

🛑مانیتورینگ متریک‌ها: زمان پاسخ، نرخ خطا، مصرف منابع، هزینه/درخواست
🛑ردیابی سرگذشت نسخه‌ها (Model Registry) و انتشارِ ایمن با Canary/Blue-Green
🛑برنامه پشتیبان‌گیری، مقیاس‌گذاری خودکار و پلن بازیابی خرابی

📝 چک‌لیست پیش از استقرار

♻️تعریف SLA و بودجه هزینه
♻️انتخاب مدل، اندازه، کوانتیزیشن و کانتکست‌لِن
♻️آماده‌سازی فاین‌تیون/LoRA و سناریوهای RAG
♻️انتخاب چارچوب سروینگ و کانفیگ هم‌زمانی/Batching
♻️طراحی ارزیابی، لاگ‌گذاری و داشبورد مانیتورینگ
♻️پیاده‌سازی ایمنی محتوا، احراز هویت و ریت‌لیمیت
♻️برنامه انتشار تدریجی و بازگشت امن (Rollback)

🔎 جمع‌بندی کاربردی

⛔️برای چت‌بات داخلی با دانش سازمانی، ترکیب RAG + مدل میان‌رده کوانتیزه، به‌علاوه vLLM و Continuous Batching معمولاً بهترین نسبت کارایی/هزینه را می‌دهد.
⛔️برای تولید انبوه متن با تأخیر پایین، تمرکز بر KV-Cache، Speculative Decoding و بهینه‌سازی سطح GPU بیشترین اثر را دارد.

@rss_ai_ir 🤖📈

#هوش_مصنوعی #LLM #دیپلوی #MLOps #مدل_زبان #RAG #بهینه‌سازی #Quantization #Inference
🎉10😁65🥰5👍4🔥4👏2🙏1