VIRSUN
15K subscribers
457 photos
260 videos
2 files
273 links
📥 در کانال @rss_ai_ir هر روز: 🔹 جدیدترین خبرهای AI و فناوری
🔹 کانال توسط اساتید هوش مصنوعی مدیریت میشود
🗯اولویت ما هوش مصنوعی در صنعت میباشد اما نیم نگاهی به موارد دیگر در این زمینه داریم

ارتباط با ادمین 1:
@Ad1_rss_ai_ir
加入频道
💡 تبدیل هر مقاله ML به یه ریپازیتوری کامل کد!


👨🏻‍💻 با Paper2Code هر مقاله یادگیری ماشین رو می‌تونی مستقیم به یه پروژه عملی و ریپوی قابل اجرا تبدیل کنی، بدون دردسر!

✏️ پشت این کار، یه سیستم مولتی‌ایجنت مبتنی بر LLM هست که هر عاملش یه وظیفه تخصصی داره:

1️⃣ برنامه‌ریزی
2️⃣ تحلیل عمیق
3️⃣ تولید کد نهایی

🏳️‍🌈 Paper2Code
🐱 GitHub-Repos



🌐 #یادگیری_ماشین #MachineLearning

💡 مهندس ML شوید :
💡 @rss_ai_ir
👍3🔥1🙏1
📉 آموزش مدل در یادگیری ماشین: تعادل بین Underfitting و Overfitting

در مسیر آموزش مدل‌های یادگیری ماشین، همیشه باید دنبال یک «نقطه تعادل» بین دقت بالا و تعمیم‌پذیری مناسب باشیم. تصویر زیر به‌خوبی سه وضعیت مختلف را نمایش می‌دهد:

---

🔵 مدل ضعیف و ساده Underfitting
وقتی مدل شما نتواند حتی روی داده‌های آموزشی عملکرد خوبی داشته باشد، دچار Underfitting شده‌اید.

📌 علائم:

* دقت پایین روی داده‌های آموزش و تست
* کاهش خطا بسیار کند است
* منحنی‌های خطای آموزش و اعتبارسنجی بسیار به هم نزدیک‌اند

🛠 راهکارها:

* استفاده از مدل‌های پیچیده‌تر (افزودن لایه در شبکه عصبی یا درخت‌های بیشتر در Random Forest)
* آموزش بیشتر (افزایش epochs)
* کاهش regularization (کاهش مقدار λ در L2 یا L1)
* اضافه‌کردن ویژگی‌های جدید یا مهندسی بهتر ویژگی‌ها (feature engineering)

---

🟠 مدل بیش‌از‌حد یادگرفته Overfitting
مدل بیش‌از‌حد خودش را با داده‌های آموزشی تطبیق داده و قدرت تعمیم به داده‌های جدید را از دست داده.

📌 علائم:

* خطای آموزش خیلی پایین، ولی خطای اعتبارسنجی بالا می‌رود
* شکاف زیاد بین منحنی Train و Validation
* عملکرد بد روی داده‌های جدید یا واقعی

🛠 راهکارها:

* استفاده از تکنیک‌های Regularization (مثل L1/L2، Dropout)
* کاهش پیچیدگی مدل
* افزایش داده با Data Augmentation
* استفاده از EarlyStopping
* استفاده از Cross-validation برای انتخاب مدل عمومی‌تر

---

🟢 — نقطه تعادل Best Fit
مدلی که هم روی داده‌های آموزشی و هم اعتبارسنجی عملکرد خوبی دارد.

📌 ابزارهای تشخیص خودکار نقطه تعادل:

*ابزار EarlyStopping: توقف خودکار آموزش زمانی که خطای اعتبارسنجی کاهش نمی‌یابد
* ابزار Learning Curve: رسم نمودار Train/Validation Loss برای پیدا کردن نقطه جدایی
* ابزار Cross-Validation: اعتبارسنجی با داده‌های مختلف برای تشخیص تعمیم بهتر

---

📌 نکته نهایی:
دقت بالا به‌تنهایی ملاک خوبی نیست. مدل خوب، مدلی‌ست که بتواند روی داده‌های جدید نیز عملکرد مطلوبی داشته باشد، نه فقط داده‌هایی که دیده.


🧠 با ما در مسیر حرفه‌ای شدن در یادگیری ماشین همراه باشید!

#MachineLearning #Overfitting #Underfitting #هوش_مصنوعی
🎓 @rss_ai_ir| آموزش‌های تخصصی و حرفه‌ای هوش مصنوعی
👍2🔥2🙏1
🧠 چه زمانی باید از یادگیری چندوظیفه‌ای (Multi-Task Learning) استفاده کنیم؟
@rss_ai_ir

---

یادگیری چندوظیفه‌ای یا Multi-Task Learning (MTL) یکی از رویکردهای قدرتمند در یادگیری ماشین است که با آموزش هم‌زمان چند وظیفه مرتبط، باعث بهبود دقت، تعمیم‌پذیری و کاهش overfitting می‌شود. اما آیا همیشه استفاده از آن منطقی است؟ نه! فقط در شرایط خاصی باید سراغ MTL رفت. 👇

---

۱. وجود چند هدف مرتبط (Correlated Tasks):
اگر چند خروجی یا برچسب در داده‌ها داری که به‌صورت مفهومی یا آماری به هم وابسته‌اند (مثل تشخیص سن، جنسیت و حالت چهره)، یادگیری هم‌زمان آن‌ها می‌تونه باعث بهبود عملکرد همه وظایف بشه.

---

۲. کمبود داده برای برخی وظایف:
وقتی داده کافی برای یک وظیفه نداری ولی برای وظیفه‌های مرتبط داده موجوده، MTL به مدل کمک می‌کنه از دانش وظایف دیگر برای بهبود یادگیری استفاده کنه.

---

۳. جلوگیری از Overfitting در وظایف کوچک:
با اشتراک‌گذاری پارامترها بین وظایف، مدل از حافظه بیش‌از‌حد روی یک وظیفه خاص جلوگیری می‌کنه و بهتر تعمیم می‌یابد.

---

۴. اشتراک ساختار در ورودی یا ویژگی‌ها:
در مسائلی که ویژگی‌های ورودی بین چند وظیفه مشترک است (مثلاً یک تصویر ورودی برای چند برچسب مختلف)، پیاده‌سازی یک معماری MTL بسیار مؤثر است.

---

۵. نیاز به بهره‌وری در منابع:
به‌جای آموزش چند مدل جداگانه، یک مدل MTL می‌تونه چندین وظیفه را هم‌زمان با منابع محاسباتی کمتر انجام دهد.

---

⚠️ چه زمانی استفاده نکنیم؟
🔸 زمانی که وظایف کاملاً بی‌ربط یا متضادند
🔸 وقتی یکی از وظایف به دقت بسیار بالا نیاز دارد و باقی فقط مزاحمند
🔸 وقتی داده‌ها در فرمت و توزیع بسیار متفاوت هستند

---

📊 یادگیری چندوظیفه‌ای می‌تونه یک استراتژی فوق‌العاده باشه، اما فقط وقتی درست به‌کار بره!

#یادگیری_چندوظیفه‌ای #MultiTaskLearning #یادگیری_ماشین #هوش_مصنوعی #MachineLearning #DeepLearning #DataScience #MTL

📡 کانال ما رو دنبال کن:
🔗 https://yangx.top/rss_ai_ir
👍2🔥1🙏1
🤖 مغز متفکر پشت ChatGPT و Gemini چیست؟ با RLHF آشنا شوید! 🧠

تا حالا از خودتان پرسیده‌اید چطور مدل‌های هوش مصنوعی مثل ChatGPT یا Gemini اینقدر خوب، مفید و "انسان‌گونه" صحبت می‌کنند؟ جواب در یک تکنیک انقلابی به نام RLHF نهفته است.

عبارت RLHF مخفف چیست؟
R**einforcement **L**earning from **H**uman **F**eedback
یادگیری تقویتی از بازخورد انسانی


به زبان ساده، RLHF فرآیندی است که در آن انسان‌ها به هوش مصنوعی "درس اخلاق و رفتار" می‌دهند!

---

🤔 این فرآیند چطور کار می‌کند؟

این جادو در سه مرحله اتفاق می‌افتد:

1️⃣ آموزش اولیه (کسب دانش خام):
یک مدل زبانی بزرگ (LLM) با حجم عظیمی از داده‌های اینترنتی آموزش می‌بیند تا اصول زبان و دانش عمومی را یاد بگیرد. در این مرحله، مدل مثل یک دانشمند همه‌چیزدان اما کمی بی‌ملاحظه است.

2️⃣ ساخت "وجدان" مصنوعی (مدل پاداش):
اینجاست که انسان‌ها وارد می‌شوند!
* مدل برای یک سوال، چندین جواب مختلف تولید می‌کند.
* اپراتورهای انسانی این جواب‌ها را از بهترین به بدترین رتبه‌بندی می‌کنند (مثلاً: جواب A عالیه، جواب B خوبه، جواب C بده).
* با هزاران نمونه از این رتبه‌بندی‌ها، یک مدل جدید به نام "مدل پاداش" (Reward Model) ساخته می‌شود. این مدل یاد می‌گیرد که مثل یک انسان، پاسخ‌های خوب را از بد تشخیص دهد. در واقع، این مدل نقش "وجدان" یا "معیار سنجش" را برای هوش مصنوعی ایفا می‌کند.

3️⃣ تنظیم دقیق با یادگیری تقویتی (مرحله ادب‌آموزی):
* مدل اصلی حالا سعی می‌کند پاسخ‌هایی تولید کند که از "مدل پاداش" امتیاز بالایی بگیرند.
* اگر پاسخی تولید کند که مفید، صادقانه و بی‌خطر باشد، پاداش می‌گیرد و آن مسیر را تقویت می‌کند.
* اگر پاسخ بدی بدهد، تنبیه (پاداش منفی) می‌شود و یاد می‌گیرد که دیگر آن اشتباه را تکرار نکند.

این چرخه بارها و بارها تکرار می‌شود تا مدل نهایی، یک دستیار هوشمند، هم‌راستا با ارزش‌های انسانی و ایمن باشد.

---

💡 چرا RLHF اینقدر مهم است؟

این تکنیک مدل‌های هوش مصنوعی را از یک ماشین پاسخگوی ساده به یک همکار و دستیار قابل اعتماد تبدیل می‌کند که مفاهیم پیچیده‌ای مثل ادب، مفید بودن و ایمنی را درک می‌کند.

📚 برای مطالعه بیشتر و منابع فنی:

اگر به جزئیات فنی علاقه‌مندید، این منابع فوق‌العاده هستند:

🔗 مقاله وبلاگ Hugging Face (توضیح عالی):
این مقاله یکی از بهترین منابع برای درک عمیق و تصویری RLHF است.
[https://huggingface.co/blog/rlhf]

👨‍💻 ریپازیتوری گیت‌هاب (کتابخانه TRL):
کتابخانه trl از Hugging Face به شما اجازه می‌دهد تا مدل‌های خود را با استفاده از RLHF آموزش دهید. نمونه کدها و مستندات کاملی دارد.
[https://github.com/huggingface/trl]

@rss_ai_ir
#هوش_مصنوعی #یادگیری_ماشین #یادگیری_تقویتی #RLHF #ChatGPT #Gemini #تکنولوژی #AI #MachineLearning
20😁19👍18🥰16🎉14🔥13👏13🙏1
This media is not supported in your browser
VIEW IN TELEGRAM
🧠⚡️ کوانتایزیشن در شبکه‌های عصبی: انقلابی در هوش مصنوعی! ⚡️🧠

🔥 آیا می‌دانستید که می‌توان حجم مدل‌های هوش مصنوعی را تا 75% کاهش داد بدون از دست دادن دقت قابل توجه؟

🎯 کوانتایزیشن چیست؟
به جای استفاده از اعداد 32 بیتی (FP32)، از اعداد کم‌دقت‌تر مثل 8 بیت (INT8) یا حتی 4 بیت استفاده می‌کنیم!

📊 مزایای شگفت‌انگیز:
🚀 سرعت اجرا: 2-4 برابر سریع‌تر
💾 حافظه: کاهش چشمگیر مصرف RAM
🔋 انرژی: مصرف کمتر برای دستگاه‌های موبایل
💰 هزینه: کاهش هزینه‌های محاسباتی

⚙️ انواع کوانتایزیشن:
🔸 Post-training Quantization (PTQ)
🔸 Quantization-aware Training (QAT)
🔸 Dynamic Quantization

🎪 کاربردهای عملی:
📱 اجرای مدل‌های بزرگ روی گوشی
🏭 استقرار مدل‌ها در محیط‌های صنعتی
☁️ کاهش هزینه‌های cloud computing


🔬 چالش‌ها:
⚠️ کاهش جزئی دقت
⚠️ نیاز به تنظیم دقیق hyperparameterها

🌟 با کوانتایزیشن، آینده هوش مصنوعی کارآمدتر و در دسترس‌تر می‌شود!

#MachineLearning #DeepLearning #AI #Quantization #TechPersian #هوش_مصنوعی
@rss_ai_ir 🤖
🥰22🎉20👏1914🔥13👍11😁8👎1🙏1
🤖 ایجنت جدید گوگل با نام MLE-STAR، دنیای مهندسی مدل‌های یادگیری ماشین را متحول کرده است
@rss_ai_ir

⛓️ بدون نیاز به حتی یک خط کدنویسی دستی، این سیستم می‌تواند به‌صورت خودکار مدل بسازد، آموزش دهد، تست کند و بهینه‌سازی انجام دهد. عملکرد آن در رقابت‌های واقعی پلتفرم Kaggle بی‌سابقه بوده است.

📈 ترکیب MLE-STAR با Gemini-2.5-Pro توانسته در ۶۳٪ رقابت‌ها مدال بگیرد و در بیش از ۸۰٪ موارد، عملکردی بالاتر از میانه رقبا داشته باشد. این نتایج نسبت به روش‌هایی مانند GPT-4o یا نسخه‌های دیگر به‌مراتب بهتر بوده‌اند.

🔍 مدل‌های جدید مانند EfficientNet یا ViT به‌صورت خودکار از طریق جست‌وجوی وب انتخاب می‌شوند؛ دیگر خبری از استفاده از مدل‌های قدیمی و ایستا نیست.

🛡 سه ماژول ایمنی درون‌ساخت برای جلوگیری از اشتباهات رایج مانند نشت داده، خطاهای کدنویسی یا توهمات مدل تعبیه شده‌اند تا نتیجه‌ای پایدار، دقیق و ایمن حاصل شود.

🧠 تمرکز این ایجنت به‌جای آزمون‌و‌خطای کور، روی انتخاب‌های هوشمند، ترکیب مدل‌ها و اصلاح دقیق کدهاست. این یعنی هوش مصنوعی در حال نوشتن هوش مصنوعی است.

🛠 دسترسی کامل به کد این سیستم از طریق ابزار ADK برای توسعه‌دهندگان فراهم شده و به‌صورت متن‌باز قابل استفاده است.

#هوش_مصنوعی #گوگل #MLESTAR #AutoML #AIagents #یادگیری_ماشین #خودکارسازی #AI4Industry #Kaggle #MachineLearning #OpenSource #مهندسی_هوش_مصنوعی #گوگل_جمینی
@rss_ai_ir
🎉2117👍17🥰16👏12😁12🔥11🙏1
This media is not supported in your browser
VIEW IN TELEGRAM
با GAN Lab، دیگه یادگیری GANها کار یکی دو دقیقه‌ست!


👨🏻‍💻 شبکه‌های مولد تخاصمی یا همون GANها، جزو پیچیده‌ترین و در عین حال جذاب‌ترین مدل‌های یادگیری عمیق به حساب میان. با این حال، درک دقیق نحوه‌ی عملکردشون حتی برای خیلی از حرفه‌ای‌ها هم ساده نیست، چه برسه به کسی که تازه می‌خواد یاد بگیره!

✏️ ابزار GAN Lab یک محیط تعاملی و بصریه که می‌تونی باهاش به‌صورت زنده و داخل مرورگر با GANها کار کنی:
مدل بسازی، آموزش بدی و مرحله‌به‌مرحله خروجی‌ها و پیشرفت رو ببینی. تجربه‌ای شبیه TensorFlow Playground، ولی مخصوص GANها!

⬅️ این ابزار با TensorFlow.js ساخته شده و تمام پردازش‌ها مستقیماً روی GPU مرورگر انجام می‌شن. یعنی:

نیازی به نصب هیچ نرم‌افزار یا تنظیمات پیچیده نداری
☑️ فقط یک مرورگر کافیه تا وارد دنیای شگفت‌انگیز GAN بشی!

📌 دسترسی به ابزار: ┌ 🏷 GAN Lab
🌎 Website
🐱 GitHub-Repos

🌐 #یادگیری_عمیق #GAN #شبکه_مولد #DeepLearning #MachineLearning #TensorFlow
🧠 مهندس یادگیری عمیق شوید:
@rss_ai_ir
🔥8👍7🥰7👏5😁5🎉42
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 تکنیک بوستینگ (Boosting) در یادگیری ماشین

بوستینگ یکی از قدرتمندترین تکنیک‌ها در یادگیری تجمعی (Ensemble Learning) است که هدف آن ترکیب چندین مدل ضعیف (Weak Learners) برای ساخت یک مدل قوی با خطای کم است.

🔹 ایده اصلی
در بوستینگ، مدل‌ها به‌صورت پیاپی (Sequential) آموزش داده می‌شوند. هر مدل جدید تلاش می‌کند خطاهای مدل‌های قبلی را اصلاح کند. به این ترتیب، وزن بیشتری به نمونه‌هایی داده می‌شود که در مراحل قبلی به‌درستی پیش‌بینی نشده‌اند.

🔹 مراحل کلی

1. شروع با یک مدل ضعیف (مثلاً درخت تصمیم کوچک)
2. محاسبه خطاها و افزایش وزن داده‌های سخت
3. آموزش مدل بعدی با تمرکز بر داده‌های دارای خطای بالا
4. ترکیب خروجی مدل‌ها (مثلاً با میانگین وزنی یا جمع‌بندی)



🔹 انواع معروف بوستینگ

AdaBoost → اولین نسخه مشهور بوستینگ، تغییر وزن نمونه‌ها پس از هر مرحله

Gradient Boosting → استفاده از گرادیان برای کاهش خطا به‌صورت مرحله‌ای

XGBoost → نسخه بهینه‌سازی‌شده با سرعت و دقت بالا

LightGBM → سریع و مناسب داده‌های حجیم

CatBoost → بهینه برای داده‌های دسته‌ای (Categorical)


🔹 مزایا

♻️دقت بالا در مسائل طبقه‌بندی و رگرسیون
♻️توانایی مدیریت داده‌های پیچیده
♻️کاهش Bias و بهبود Generalization


🔹 معایب

♻️حساس به نویز و داده‌های پرت
♻️هزینه محاسباتی بالا در مجموعه داده‌های بزرگ


📌 بوستینگ در بسیاری از مسابقات داده‌کاوی (Kaggle) و پروژه‌های صنعتی، انتخاب اول برای رسیدن به بالاترین دقت است.

#هوش_مصنوعی #یادگیری_ماشین #Boosting #DataScience #MachineLearning #EnsembleLearning #AI #XGBoost #LightGBM #CatBoost #GradientBoosting

@rss_ai_ir 🤖
🎉8👍6👏65😁5🔥4🥰2
📌 یادگیری تقویتی در صنعت — چه زمانی مناسب است؟
@rss_ai_ir 🤖🏭

یادگیری تقویتی (Reinforcement Learning) زمانی در پروژه‌های صنعتی کاربرد دارد که:


---

🔹 محیط پویا و غیرقطعی است
وقتی فرآیند یا سیستم دائم در حال تغییر است و مدل باید به مرور زمان بهترین تصمیم را یاد بگیرد، RL انتخاب مناسبی است.
#DynamicSystems

🔹 هدف رسیدن به حداکثر بهره‌وری در بلندمدت است
اگر سود یا کیفیت وابسته به سلسله‌ تصمیم‌ها باشد و نه یک خروجی لحظه‌ای، RL می‌تواند راه‌حل بهینه ارائه دهد.
#LongTermOptimization

🔹 امکان شبیه‌سازی یا تعامل مکرر با سیستم وجود دارد
RL برای یادگیری نیاز به آزمون‌وخطای فراوان دارد؛ داشتن یک شبیه‌ساز صنعتی یا امکان تست ایمن روی سیستم، ضروری است.
#IndustrialSimulation

🔹 قوانین تصمیم‌گیری سخت و دقیق نیستند
وقتی نمی‌توان با قوانین از پیش‌تعریف‌شده تمام سناریوها را پوشش داد، RL می‌تواند با تجربه‌آموزی، سیاست تصمیم‌گیری را کشف کند.
#AdaptiveControl

🔹 مسئله چندمرحله‌ای یا کنترل فرآیند است
از کنترل ربات‌ها و خطوط تولید گرفته تا زمان‌بندی تعمیرات و مدیریت مصرف انرژی، RL در مسائل Sequential Decision Making می‌درخشد.
#ProcessControl


---

📍 مثال‌ها در صنعت:

♻️بهینه‌سازی مصرف انرژی در کارخانه
♻️کنترل بازوی رباتیک در مونتاژ
♻️زمان‌بندی تولید و تعمیرات پیشگیرانه
♻️تنظیمات خودکار پارامترهای فرآیند ذوب یا ریخته‌گری


#ReinforcementLearning #هوش_مصنوعی #AI_industrial #RL_industry #machinelearning
🔥8👍7🎉53😁3👏1
This media is not supported in your browser
VIEW IN TELEGRAM
📌 یادگیری عمیق و نقش Batch Normalization

در مسیر طراحی شبکه‌های عصبی عمیق، یکی از چالش‌های کلیدی، پراکندگی داخلی داده‌ها (Internal Covariate Shift) است. این پدیده زمانی رخ می‌دهد که توزیع ورودی هر لایه در طول آموزش تغییر کند و باعث ناپایداری و کندی یادگیری شود.

🔑 تکنیک Batch Normalization (BN) یکی از تکنیک‌های حیاتی برای رفع این مشکل است. در این روش، ورودی هر لایه در طول آموزش نرمال‌سازی می‌شود و سپس با پارامترهای قابل یادگیری (گاما و بتا) مقیاس‌دهی و انتقال داده می‌شود.

⚡️ مزایای کلیدی BN:

1. 🚀 شتاب در آموزش → امکان یادگیری سریع‌تر با نرخ یادگیری بالاتر.
2. 🔒 پایداری بیشتر → جلوگیری از نوسان شدید در گرادیان‌ها.
3. 🎯 بهبود دقت → کمک به مدل برای رسیدن به مینیمم بهینه‌تر.
4. 🛡 اثر منظم‌سازی (Regularization) → کاهش نیاز به Dropout در بسیاری از موارد.

💡 امروزه، BN به عنوان یک استاندارد طلایی در شبکه‌های کانولوشنی (CNNs) شناخته می‌شود و تقریباً در همه مدل‌های مدرن (مانند ResNet و EfficientNet) استفاده می‌شود.

🔍 با این حال، در مدل‌های سبک یا کاربردهای بلادرنگ، جایگزین‌هایی مثل Layer Normalization، Group Normalization و Instance Normalization نیز اهمیت ویژه‌ای پیدا کرده‌اند.

---

نتیجه‌گیری:
اگر به دنبال ساخت یک شبکه عمیق پایدار و سریع هستید، Batch Normalization یکی از اولین ابزارهایی است که باید در جعبه‌ابزار خود داشته باشید.

---

🔖 #DeepLearning #BatchNormalization #AI #MachineLearning
✍️ @rss_ai_ir
🔥7😁6👍5🥰5🎉5👏43👎1🙏1
This media is not supported in your browser
VIEW IN TELEGRAM
📌 دامنه‌برداری (Domain Adaptation) در یادگیری ماشین

یکی از چالش‌های اصلی در هوش مصنوعی اینه که مدلی که روی یک دامنه (Domain) آموزش دیده، معمولاً روی دامنه‌های دیگه عملکرد خوبی نداره. به این مشکل می‌گن Domain Shift.

✦ مثلا:
🔹 مدلی که برای تشخیص عیب روی کاتدهای مس در یک کارخانه آموزش دیده، وقتی روی تصاویر کارخانه دیگه استفاده میشه (با نور، زاویه دوربین یا کیفیت متفاوت)، دچار افت دقت میشه.

اینجا Domain Adaptation وارد میشه 👇

🎯 تعریف:

فرآیندی که در اون یک مدل آموزش‌دیده روی دامنه مبدأ (Source Domain)، برای عملکرد بهتر روی دامنه مقصد (Target Domain) تطبیق داده میشه، بدون نیاز به برچسب‌گذاری گسترده روی داده‌های مقصد.

🔑 رویکردهای اصلی:

1. Feature Alignment

تطبیق توزیع ویژگی‌های مبدأ و مقصد با تکنیک‌هایی مثل MMD (Maximum Mean Discrepancy) یا CORAL.



2. Adversarial Learning

استفاده از شبکه‌های خصمانه (GAN) برای یادگیری نمایش مشترک بین دو دامنه.



3. Self-Training / Pseudo-Labeling

مدل روی داده مقصد پیش‌بینی می‌کنه و برچسب‌های احتمالی به‌صورت شبه‌برچسب برای یادگیری دوباره استفاده میشه.



4. Domain-Invariant Features

یادگیری ویژگی‌هایی که به دامنه وابسته نیستن و در هر دو محیط پایدار عمل می‌کنن.




🏭 کاربردهای صنعتی:

♻️پردازش تصویر: تشخیص عیب در خطوط تولید مختلف.
♻️پزشکی: مدلی که روی داده‌های MRI یک دستگاه آموزش دیده، روی دستگاه دیگه هم کار کنه.
♻️خودروهای خودران: انتقال یادگیری از شبیه‌ساز به دنیای واقعی.


خلاصه:
عبارت Domain Adaptation یعنی مدل رو طوری آموزش بدیم که انعطاف‌پذیر بشه و در محیط‌های جدید هم جواب بده، بدون اینکه لازم باشه از صفر دوباره داده‌گذاری کنیم.

@rss_ai_ir

#DomainAdaptation #MachineLearning #TransferLearning #هوش_مصنوعی
👍18🎉1612🥰12🔥11😁11👏10
🔮 گوی بلورین هوش مصنوعی در کارخانه‌ها: خداحافظی با خرابی‌های ناگهانی!

در صنعت، یکی از بزرگترین کابوس‌ها، توقف خط تولید به خاطر خرابی یک دستگاه است. هر دقیقه توقف، یعنی میلیون‌ها تومان ضرر. به طور سنتی، دو رویکرد برای تعمیرات وجود داشت:

1. تعمیر پس از خرابی (Reactive): 👨‍🚒🔥 دستگاه خراب می‌شود، تولید متوقف می‌شود، تیم تعمیرات سراسیمه وارد عمل می‌شود. (پرهزینه و فاجعه‌بار!)
2. تعمیرات پیشگیرانه (Preventive): 📅🔧 تعویض قطعات بر اساس یک برنامه زمانی ثابت (مثلاً هر ۶ ماه). (بهتر است، اما اغلب قطعات سالم را دور می‌ریزیم و جلوی خرابی‌های غیرمنتظره را هم نمی‌گیرد.)

اما هوش مصنوعی یک راه حل سوم و هوشمندانه‌تر را به ارمغان آورده است: نگهداری و تعمیرات پیش‌بینانه (Predictive Maintenance).

⛔️ این جادو چطور کار می‌کند؟ 🧠⚙️

ایده اصلی: به جای حدس زدن، پیش‌بینی دقیق کنیم که یک دستگاه *دقیقاً کِی* و *چرا* در شرف خرابی است.

این فرآیند در چند مرحله انجام می‌شود:

۱. جمع‌آوری داده‌ها (Data Collection): 📶
سنسورهای اینترنت اشیا (IoT) روی تجهیزات حیاتی نصب می‌شوند. این سنسورها به طور مداوم داده‌هایی مثل:
* دما 🌡
* لرزش (Vibration)
* صدا 🔊
* فشار
* مصرف برق
* و...
را جمع‌آوری می‌کنند.

۲. یادگیری الگوها (Pattern Recognition): 🤖
الگوریتم‌های یادگیری ماشین (Machine Learning) با تحلیل این حجم عظیم از داده‌ها، "امضای عملکرد نرمال" هر دستگاه را یاد می‌گیرند. آن‌ها همچنین الگوهای بسیار ظریفی را که معمولاً قبل از وقوع خرابی رخ می‌دهند، شناسایی می‌کنند. (مثلاً یک تغییر جزئی در الگوی لرزش یا افزایش نامحسوس دما).

۳. پیش‌بینی و هشدار (Prediction & Alert): 🚨
مدل هوش مصنوعی به محض اینکه تشخیص دهد داده‌های لحظه‌ای دستگاه از الگوی نرمال خارج شده و به سمت یک الگوی خرابی در حال حرکت است، یک هشدار به تیم فنی ارسال می‌کند. این هشدار فقط نمی‌گوید "دستگاه در خطر است"، بلکه اغلب می‌تواند نوع خرابی احتمالی و زمان باقی‌مانده تا وقوع آن را نیز تخمین بزند.

مثال واقعی: ✈️
موتورهای جت هواپیما هزاران سنسور دارند. هوش مصنوعی داده‌های این سنسورها را تحلیل کرده و قبل از اینکه یک نقص کوچک به یک مشکل فاجعه‌بار در حین پرواز تبدیل شود، به مهندسان روی زمین هشدار می‌دهد تا تعمیرات لازم را برنامه‌ریزی کنند.

مزایای کلیدی:
کاهش چشمگیر توقف تولید (حتی تا ۵۰٪)
کاهش هزینه‌های تعمیرات (تعویض قطعه در زمان مناسب)
افزایش ایمنی برای کارکنان و محیط زیست
افزایش عمر مفید تجهیزات

نتیجه‌گیری:
نگهداری و تعمیرات پیش‌بینانه فقط یک ابزار نیست؛ بلکه یک تغییر پارادایم از یک رویکرد واکنشی و پرهزینه به یک فرهنگ داده‌محور، هوشمند و پیش‌فعال در قلب صنعت است.

#هوش_مصنوعی #صنعت_هوشمند #نگهداری_و_تعمیرات_پیشبینانه #اینترنت_اشیا #یادگیری_ماشین #صنعت_چهارم #تحول_دیجیتال
#AIinIndustry #PredictiveMaintenance #PdM #Industry40 #IoT #MachineLearning
🥰20👏1915👍15🔥14🎉13😁11🙏1
📌 عنوان:
چرا دراپ‌اوت فقط یک «خاموش‌کننده تصادفی» نیست؟ 🤔🔍

---

بیشتر متخصصان هوش مصنوعی، دراپ‌اوت را صرفاً روشی برای خاموش کردن تصادفی نرون‌ها می‌دانند، اما پشت این تکنیک ایده‌ای عمیق‌تر وجود دارد که آن را به یکی از مهم‌ترین روش‌های منظم‌سازی (Regularization) تبدیل کرده است.

💡 ایده اصلی
در مراحل آموزش، هر بار درصدی از نرون‌ها (مثلاً ۲۰ تا ۵۰٪) به طور تصادفی غیرفعال می‌شوند. این کار جلوی وابستگی بیش‌ازحد شبکه به مسیرهای خاص پردازش اطلاعات را می‌گیرد.

🌀 اثر پنهان
دراپ‌اوت در عمل شبیه ترکیب‌گیری مدل‌ها (Ensemble) عمل می‌کند. با هر بار غیرفعال شدن بخشی از نرون‌ها، یک زیرمدل جدید ساخته می‌شود و در نهایت، خروجی مدل مانند میانگین‌گیری از هزاران زیرمدل مستقل خواهد بود.

🚀 چرا اهمیت دارد؟
- کاهش شدید بیش‌برازش (Overfitting) بدون نیاز به داده اضافه
- ایجاد تعداد زیادی مدل کوچک در دل یک مدل اصلی بدون هزینه‌ی جداگانه
- سازگاری فوق‌العاده با معماری‌های پیشرفته مثل ترنسفورمرها

⚙️ نکته تخصصی
در هنگام تست، دراپ‌اوت غیرفعال است اما وزن‌ها با توجه به احتمال غیرفعال‌سازی، مقیاس‌بندی (Re-scaling) می‌شوند تا خروجی سازگار باقی بماند.

---

🔖 #هوش_مصنوعی #یادگیری_عمیق #LLM #شبکه_عصبی #دراپ_اوت #DeepLearning #AI #MachineLearning
@rss_ai_ir
🥰8👏5😁54🔥4👍2🎉2
📌 آموزش رایگان Azure Machine Learning

اگر دنبال یادگیری عملی Azure ML هستید، این پلی‌لیست یوتیوب شامل آموزش‌های گام‌به‌گام است:

🔹 مروری بر Azure Machine Learning
🔹 آموزش AutoML
🔹 طراحی و آموزش مدل‌ها با Azure ML Designer
🔹 استقرار مدل‌ها
🔹 کدنویسی مستقیم (Code-First) با Azure ML
🔹 یکپارچه‌سازی با MLflow
🔹همچنین MLOps و مدیریت عملیات یادگیری ماشین

🎥 لینک پلی‌لیست کامل:
YouTube - Azure Machine Learning Playlist

#Azure #MachineLearning #MLOps #AI #Python

@rss_ai_ir
7👍7🎉5🔥4😁4👏1