VIRSUN
14.6K subscribers
473 photos
268 videos
2 files
278 links
📥 در کانال @rss_ai_ir هر روز: 🔹 جدیدترین خبرهای AI و فناوری
🔹 کانال توسط اساتید هوش مصنوعی مدیریت میشود
🗯اولویت ما هوش مصنوعی در صنعت میباشد اما نیم نگاهی به موارد دیگر در این زمینه داریم

ارتباط با ادمین 1:
@Ad1_rss_ai_ir
加入频道
This media is not supported in your browser
VIEW IN TELEGRAM
🧠⚡️ کوانتایزیشن در شبکه‌های عصبی: انقلابی در هوش مصنوعی! ⚡️🧠

🔥 آیا می‌دانستید که می‌توان حجم مدل‌های هوش مصنوعی را تا 75% کاهش داد بدون از دست دادن دقت قابل توجه؟

🎯 کوانتایزیشن چیست؟
به جای استفاده از اعداد 32 بیتی (FP32)، از اعداد کم‌دقت‌تر مثل 8 بیت (INT8) یا حتی 4 بیت استفاده می‌کنیم!

📊 مزایای شگفت‌انگیز:
🚀 سرعت اجرا: 2-4 برابر سریع‌تر
💾 حافظه: کاهش چشمگیر مصرف RAM
🔋 انرژی: مصرف کمتر برای دستگاه‌های موبایل
💰 هزینه: کاهش هزینه‌های محاسباتی

⚙️ انواع کوانتایزیشن:
🔸 Post-training Quantization (PTQ)
🔸 Quantization-aware Training (QAT)
🔸 Dynamic Quantization

🎪 کاربردهای عملی:
📱 اجرای مدل‌های بزرگ روی گوشی
🏭 استقرار مدل‌ها در محیط‌های صنعتی
☁️ کاهش هزینه‌های cloud computing


🔬 چالش‌ها:
⚠️ کاهش جزئی دقت
⚠️ نیاز به تنظیم دقیق hyperparameterها

🌟 با کوانتایزیشن، آینده هوش مصنوعی کارآمدتر و در دسترس‌تر می‌شود!

#MachineLearning #DeepLearning #AI #Quantization #TechPersian #هوش_مصنوعی
@rss_ai_ir 🤖
🥰22🎉20👏1914🔥13👍11😁8👎1🙏1
مفهوم دیپلوی در مدل‌های زبانی بزرگ یعنی رساندن مدل از آزمایشگاه به محیط واقعیِ تولید، با تمرکز همزمان بر کیفیت، سرعت و هزینه 🚀

🧭 اهداف کلیدی در دیپلوی

❇️تضمین تأخیر پایین (Latency/SLA)، پایداری و مقیاس‌پذیری
❇️کنترل هزینه به‌ازای هر توکن و مصرف GPU/CPU
❇️پایش ایمنی محتوا و حفظ حریم خصوصی داده‌ها

🏗 الگوهای دیپلوی

✳️سرویس ابری مدیریت‌شده: راه‌اندازی سریع، اما وابستگی و هزینه متغیر
✳️استقرار خودمیزبان: کنترل کامل و بهینه‌سازی عمیق، اما نیازمند تخصص عملیاتی
✳️معماری هیبرید: استفاده از مزیت هر دو رویکرد برای سناریوهای حساس به داده

🧩 آماده‌سازی مدل

انتخاب اندازه و کانتکست‌لِن مناسب نیاز کسب‌وکار
کوانتیزه‌سازی (INT8/4) و دیستیل برای کاهش حافظه و افزایش سرعت
فاین‌تیون سبک با LoRA/PEFT برای شخصی‌سازی کم‌هزینه
یکپارچه‌سازی با ابزارها و بازیگرها (توابع، جستجو، پایگاه دانش/RAG)

⚡️ سروینگ و بهینه‌سازی اجرا

بهره‌گیری از فریم‌ورک‌های سروینگ (مانند vLLM، TGI، TensorRT-LLM) برای مدیریت هم‌زمانی و صف درخواست‌ها
استفاده از تکنیک‌های Continuous Batching، KV-Cache، Flash-Attention، Speculative Decoding برای افزایش توکن‌برثانیه
تنظیم طول پاسخ، دمای نمونه‌برداری و حداکثر توکن‌ها برای کنترل کیفیت/هزینه

🧮 ظرفیت‌سنجی و منابع

♨️برآورد حافظه وزن‌ها متناسب با اندازه مدل و دقت عددی (مثلاً حدوداً: 7B با INT8 ≈ نزدیک 7–8GB؛ با FP16 ≈ حدود 14–16GB)
♨️درنظرگرفتن حافظه KV-Cache که با طول متن، تعداد درخواست‌های هم‌زمان و دقت عددی رشد می‌کند
♨️سنجش عملی با بار مصنوعی برای رسیدن به هدف‌های Tokens/s و هم‌زمانی

🔐 ایمنی، امنیت و انطباق

💢احراز هویت، ریت‌لیمیت و جداسازی محیط اجرا
💢فیلترینگ محتوایی، ممیزی لاگ‌ها و حذف داده‌های حساس
💢پایبندی به مقررات (حریم خصوصی و نگهداری داده)

🧪 ارزیابی و تضمین کیفیت

❇️طراحی Golden Set از پرامپت‌ها و پاسخ‌های مرجع
❇️اجرای ارزیابی خودکارِ کیفیّت، واقع‌نمایی RAG و آزمون‌های رگرسیونی قبل از هر انتشار
❇️پایش پس از دیپلوی با A/B تست و تحلیل لاگ برای بهبود پرامپت و ریتونینگ

🧰 قابلیت مشاهده و نگه‌داری

🛑مانیتورینگ متریک‌ها: زمان پاسخ، نرخ خطا، مصرف منابع، هزینه/درخواست
🛑ردیابی سرگذشت نسخه‌ها (Model Registry) و انتشارِ ایمن با Canary/Blue-Green
🛑برنامه پشتیبان‌گیری، مقیاس‌گذاری خودکار و پلن بازیابی خرابی

📝 چک‌لیست پیش از استقرار

♻️تعریف SLA و بودجه هزینه
♻️انتخاب مدل، اندازه، کوانتیزیشن و کانتکست‌لِن
♻️آماده‌سازی فاین‌تیون/LoRA و سناریوهای RAG
♻️انتخاب چارچوب سروینگ و کانفیگ هم‌زمانی/Batching
♻️طراحی ارزیابی، لاگ‌گذاری و داشبورد مانیتورینگ
♻️پیاده‌سازی ایمنی محتوا، احراز هویت و ریت‌لیمیت
♻️برنامه انتشار تدریجی و بازگشت امن (Rollback)

🔎 جمع‌بندی کاربردی

⛔️برای چت‌بات داخلی با دانش سازمانی، ترکیب RAG + مدل میان‌رده کوانتیزه، به‌علاوه vLLM و Continuous Batching معمولاً بهترین نسبت کارایی/هزینه را می‌دهد.
⛔️برای تولید انبوه متن با تأخیر پایین، تمرکز بر KV-Cache، Speculative Decoding و بهینه‌سازی سطح GPU بیشترین اثر را دارد.

@rss_ai_ir 🤖📈

#هوش_مصنوعی #LLM #دیپلوی #MLOps #مدل_زبان #RAG #بهینه‌سازی #Quantization #Inference
👍1🔥1🙏1