VIRSUN
15K subscribers
457 photos
260 videos
2 files
273 links
📥 در کانال @rss_ai_ir هر روز: 🔹 جدیدترین خبرهای AI و فناوری
🔹 کانال توسط اساتید هوش مصنوعی مدیریت میشود
🗯اولویت ما هوش مصنوعی در صنعت میباشد اما نیم نگاهی به موارد دیگر در این زمینه داریم

ارتباط با ادمین 1:
@Ad1_rss_ai_ir
加入频道
🧠 بازسازی تصاویر ذهنی با سیگنال EEG و یادگیری عمیق!

به دنیای آینده خوش آمدید: پروژه [EEGStyleGAN-ADA](https://github.com/prajwalsingh/EEGStyleGAN-ADA) یکی از جدیدترین دستاوردهای هوش مصنوعی است که با استفاده از سیگنال مغزی (EEG)، تصاویری که افراد تصور می‌کنند را بازسازی می‌کند!

🔬 این پروژه چگونه کار می‌کند؟
1. استخراج ویژگی از سیگنال EEG:
ابتدا سیگنال‌های مغزی وارد شبکه‌های عمیق (LSTM, CNN با یادگیری contrastive) می‌شوند تا بازنمایی‌های قوی و قابل تفکیکی از فکر فرد به دست آید.

2. تولید تصویر با StyleGAN-ADA:
ویژگی‌های استخراج‌شده به فضای latent مدل StyleGAN-ADA نگاشت می‌شوند تا تصویر ذهنی فرد روی بوم دیجیتال (واقعاً!) نقاشی شود.

📈 دستاوردها و نقاط قوت:
- امتیاز بالای Inception Score روی دیتاست‌های تخصصی مثل EEGCVPR40 و Thoughtviz (بهبود چشم‌گیر نسبت به روش‌های قبلی)
- استخراج نمایه‌های مغزی مستقل از سوژه (Generalizable)
- ارائه checkpoints و کد باز برای استفاده پژوهشگران

🥽 کاربردها:
- رابط مغز و کامپیوتر (BCI) و کمک به افراد با محدودیت حرکتی یا گفتاری
- درک بهتر رمزگذاری اطلاعات بصری در مغز انسان

آینده تعامل با مغز انسان را جدی بگیرید...
منبع کد و توضیحات بیشتر:
🔗 https://github.com/prajwalsingh/EEGStyleGAN-ADA
🔗 [مقاله علمی arXiv:2310.16532](https://arxiv.org/abs/2310.16532)

---

❤️ برای اطلاعات بیشتر و پروژه‌های مشابه، ما را دنبال کنید!
#BCI #EEG #DeepLearning #AI #NeuroAI
🎉20🔥17👏17🥰16😁1615👍8
This media is not supported in your browser
VIEW IN TELEGRAM
🧠⚡️ کوانتایزیشن در شبکه‌های عصبی: انقلابی در هوش مصنوعی! ⚡️🧠

🔥 آیا می‌دانستید که می‌توان حجم مدل‌های هوش مصنوعی را تا 75% کاهش داد بدون از دست دادن دقت قابل توجه؟

🎯 کوانتایزیشن چیست؟
به جای استفاده از اعداد 32 بیتی (FP32)، از اعداد کم‌دقت‌تر مثل 8 بیت (INT8) یا حتی 4 بیت استفاده می‌کنیم!

📊 مزایای شگفت‌انگیز:
🚀 سرعت اجرا: 2-4 برابر سریع‌تر
💾 حافظه: کاهش چشمگیر مصرف RAM
🔋 انرژی: مصرف کمتر برای دستگاه‌های موبایل
💰 هزینه: کاهش هزینه‌های محاسباتی

⚙️ انواع کوانتایزیشن:
🔸 Post-training Quantization (PTQ)
🔸 Quantization-aware Training (QAT)
🔸 Dynamic Quantization

🎪 کاربردهای عملی:
📱 اجرای مدل‌های بزرگ روی گوشی
🏭 استقرار مدل‌ها در محیط‌های صنعتی
☁️ کاهش هزینه‌های cloud computing


🔬 چالش‌ها:
⚠️ کاهش جزئی دقت
⚠️ نیاز به تنظیم دقیق hyperparameterها

🌟 با کوانتایزیشن، آینده هوش مصنوعی کارآمدتر و در دسترس‌تر می‌شود!

#MachineLearning #DeepLearning #AI #Quantization #TechPersian #هوش_مصنوعی
@rss_ai_ir 🤖
🥰22🎉20👏1914🔥13👍11😁8👎1🙏1
This media is not supported in your browser
VIEW IN TELEGRAM
با GAN Lab، دیگه یادگیری GANها کار یکی دو دقیقه‌ست!


👨🏻‍💻 شبکه‌های مولد تخاصمی یا همون GANها، جزو پیچیده‌ترین و در عین حال جذاب‌ترین مدل‌های یادگیری عمیق به حساب میان. با این حال، درک دقیق نحوه‌ی عملکردشون حتی برای خیلی از حرفه‌ای‌ها هم ساده نیست، چه برسه به کسی که تازه می‌خواد یاد بگیره!

✏️ ابزار GAN Lab یک محیط تعاملی و بصریه که می‌تونی باهاش به‌صورت زنده و داخل مرورگر با GANها کار کنی:
مدل بسازی، آموزش بدی و مرحله‌به‌مرحله خروجی‌ها و پیشرفت رو ببینی. تجربه‌ای شبیه TensorFlow Playground، ولی مخصوص GANها!

⬅️ این ابزار با TensorFlow.js ساخته شده و تمام پردازش‌ها مستقیماً روی GPU مرورگر انجام می‌شن. یعنی:

نیازی به نصب هیچ نرم‌افزار یا تنظیمات پیچیده نداری
☑️ فقط یک مرورگر کافیه تا وارد دنیای شگفت‌انگیز GAN بشی!

📌 دسترسی به ابزار: ┌ 🏷 GAN Lab
🌎 Website
🐱 GitHub-Repos

🌐 #یادگیری_عمیق #GAN #شبکه_مولد #DeepLearning #MachineLearning #TensorFlow
🧠 مهندس یادگیری عمیق شوید:
@rss_ai_ir
🔥8👍7🥰7👏5😁5🎉42
📊 روش‌های تخصصی تشخیص ناهنجاری (Anomaly Detection)

تشخیص ناهنجاری یا Anomaly Detection یکی از بخش‌های کلیدی در هوش مصنوعی، یادگیری ماشین و تحلیل داده است که هدف آن شناسایی الگوهای غیرعادی در داده‌هاست. این روش‌ها در حوزه‌هایی مانند تشخیص خرابی تجهیزات، امنیت سایبری، تشخیص تقلب مالی و مانیتورینگ سلامت کاربرد دارند.


---

🔍 دسته‌بندی اصلی روش‌ها

1️⃣ روش‌های آماری (Statistical Methods)

ایده: فرض بر این است که داده‌های نرمال از یک توزیع مشخص (مثلاً Gaussian) پیروی می‌کنند و نقاطی که احتمال وقوع‌شان کم است، ناهنجار هستند.

مثال‌ها:

Z-Score

Grubbs’ Test

Generalized ESD Test


مزیت: ساده و سریع

ضعف: کارایی پایین در داده‌های پیچیده یا توزیع غیرخطی



---

2️⃣ روش‌های مبتنی بر فاصله و چگالی (Distance & Density Based)

ایده: نقاط ناهنجار فاصله زیادی از خوشه‌ها دارند یا در مناطق با چگالی کم قرار گرفته‌اند.

مثال‌ها:

K-Nearest Neighbors (KNN) for Outlier Detection

Local Outlier Factor (LOF)

DBSCAN برای شناسایی نقاط کم‌چگالی


مزیت: عدم نیاز به فرض توزیع

ضعف: مقیاس‌پذیری ضعیف در دیتاست‌های خیلی بزرگ



---

3️⃣ روش‌های مبتنی بر یادگیری نظارت‌شده (Supervised Learning)

ایده: برچسب‌گذاری داده‌های نرمال و غیرنرمال، سپس آموزش یک مدل طبقه‌بندی.

مثال‌ها:

Random Forest

SVM (با کلاس‌بندی دوتایی)

XGBoost


مزیت: دقت بالا در داده‌های برچسب‌خورده

ضعف: نیاز به داده‌های برچسب‌خورده (که معمولاً نایاب هستند)



---

4️⃣ روش‌های بدون‌نظارت (Unsupervised Learning)

ایده: الگوریتم داده‌ها را بدون برچسب خوشه‌بندی کرده و نقاط دورافتاده را ناهنجار تشخیص می‌دهد.

مثال‌ها:

Isolation Forest

One-Class SVM

PCA for Anomaly Detection


مزیت: بدون نیاز به برچسب

ضعف: حساسیت به نویز



---

5️⃣ روش‌های مبتنی بر یادگیری عمیق (Deep Learning)

ایده: استفاده از شبکه‌های عصبی برای مدل‌سازی داده‌های نرمال و شناسایی نمونه‌های غیرعادی بر اساس خطای بازسازی یا احتمال تولید.

مثال‌ها:

Autoencoders (و Variational Autoencoders)

LSTM Autoencoders برای داده‌های زمانی

GAN-based Anomaly Detection (مثل AnoGAN)


مزیت: قدرت مدل‌سازی بالا در داده‌های پیچیده

ضعف: نیاز به منابع محاسباتی زیاد و داده کافی



---

6️⃣ روش‌های ترکیبی (Hybrid Approaches)

ایده: ترکیب چند الگوریتم برای بهبود دقت و کاهش نرخ خطا.

مثال: استفاده از Isolation Forest به‌عنوان پیش‌پردازش و سپس Autoencoder برای تحلیل عمیق.



---

💡 نکته صنعتی:
در مانیتورینگ صنعتی (مثل تشخیص خرابی موتور یا توربین)، ترکیب مدل‌های پیش‌بینی سری زمانی (مثل Prophet یا LSTM) با روش‌های anomaly detection بسیار مؤثر است.


---

📍 @rss_ai_ir | #هوش_مصنوعی #AnomalyDetection #یادگیری_ماشین #DeepLearning #داده_کاوی
🥰7🎉7🔥6👏65👍4😁4
This media is not supported in your browser
VIEW IN TELEGRAM
🎯 کتابخانه Trackers – راهکاری ماژولار برای ردیابی چندشیء همزمان

👨🏻‍💻 در پروژه‌هایی که نیاز به ردیابی همزمان چندین شیء در ویدیو داشتم، استفاده از DeepSORT و SORT همیشه با یک مشکل همراه بود: یا سخت به مدل‌های مختلف وصل می‌شدند یا ساختار کد آن‌ها انعطاف‌پذیر و قابل توسعه نبود.

✏️ کتابخانه Trackers این مشکل را برطرف کرده. یک پکیج کاملاً ماژولار که اجازه می‌دهد به‌راحتی بین الگوریتم‌های مختلف جابه‌جا شوید و با انواع مدل‌های تشخیص شیء مثل Ultralytics، Transformers، MMDetection و … یکپارچه‌سازی کنید.

🔹 ویژگی‌ها:
1️⃣ فقط کافی است مدل تشخیص خود را به آن بدهید؛ ماژول ردیابی بقیه کار را انجام می‌دهد.
2️⃣ پشتیبانی رسمی از SORT و DeepSORT.
3️⃣ پشتیبانی آینده از الگوریتم‌های قدرتمندتر مانند StrongSORT و ByteTrack.

📦 نصب:

pip install trackers

📂 ساختار:
🏳️‍🌈 Trackers
📖 Documentation
♾️ DeepSORT tracker
♾️ SORT tracker
🐱 GitHub-Repos

🌐 #یادگیری_عمیق #DeepLearning
@rss_ai_ir
👏16🥰15😁15🎉1514🔥13👍7🙏1
🤖 پلتفرم Genie Envisioner – راهکاری نوین برای آموزش ربات‌های دستکاری اشیاء

شرکت AgiBot چارچوبی جامع مبتنی بر مدل جهان (World Model) برای کنترل و آموزش بازوهای رباتیکی معرفی کرده است. این پلتفرم از سه بخش کلیدی تشکیل شده است:

🔹 بخش GE-Base – مدل ویدئویی بر پایه *diffusion* که با بیش از ۳۰۰۰ ساعت داده و یک میلیون اپیزود دستکاری اشیاء از مجموعه‌داده AgiBot-World-Beta آموزش دیده است. این مدل توانایی تحلیل دقیق توالی‌های تصویری و حرکتی را دارد و هسته اصلی سیستم به شمار می‌آید.

🔹 بخش GE-Act – مدل تصمیم‌گیری مبتنی بر روش *flow-matching* که از ویژگی‌های بصری استخراج‌شده توسط GE-Base برای تولید حرکات بهینه بازوی ربات در زمان واقعی استفاده می‌کند.

🔹 بخش GE-Sim – شبیه‌ساز عصبی محیط که برای ارزیابی و بهینه‌سازی عملکرد ربات در حلقه‌بسته به کار می‌رود و امکان تست سیاست‌های کنترلی را بدون نیاز به اجرای واقعی فراهم می‌کند.

🟢 توسعه‌دهندگان وعده داده‌اند که کد منبع، مدل‌ها و بنچمارک‌ها به‌صورت متن‌باز منتشر شوند تا پژوهشگران و مهندسان بتوانند این سیستم را بازتولید و گسترش دهند.

📄 مقاله: [arxiv.org/abs/2508.05635v1]
🌐 پروژه: [genie-envisioner.github.io]

@rss_ai_ir

#هوش_مصنوعی #رباتیک #مدل_جهان #DeepLearning #AI
12😁11🎉10👍9👏9🔥8🥰6🙏1
This media is not supported in your browser
VIEW IN TELEGRAM
📌 نقشه راه برای تبدیل شدن به پرامپت انجینیر در سال ۲۰۲۵ 🧑🏻‍💻

برای متخصص شدن در حوزه Prompt Engineering باید مسیر زیر را طی کنید:

1️⃣ یادگیری مبانی اولیه پرامپت‌نویسی
2️⃣ آشنایی با مدل‌های زبانی (LLMs) و نحوه تنظیم آن‌ها
3️⃣ تمرین نوشتن پرامپت‌های کارآمد و بهینه
4️⃣ ساخت الگوهای پرامپت و درک معماری آن‌ها
5️⃣ تسلط بر تکنیک‌های پیشرفته در پرامپت‌نویسی
6️⃣ تجربه کار با مدل‌های چندوجهی (متنی–تصویری–صوتی)
7️⃣ تمرین مداوم برای تبدیل شدن به یک پرامپت‌نویس حرفه‌ای

🌐 آینده مشاغل مرتبط با هوش مصنوعی نیازمند مهارت در پرامپت‌نویسی است. کسی که این مهارت را دارد، نقش کلیدی در جهت‌دهی به مدل‌های هوش مصنوعی ایفا می‌کند.

#هوش_مصنوعی #PromptEngineering #AI #LLM #DeepLearning
@rss_ai_ir
👍8🔥64🎉4😁1
🚨 چه زمانی شغلت با پیشرفت هوش مصنوعی در خطر است؟

هوش مصنوعی قرار نیست همه رو شکست بده؛ فقط کسانی رو که در برابر تغییر منفعل می‌مونن. 👇

🔹 کارهای تکراری
اگر شغلت پر از وظایف روتین و ساده باشه (مثل ورود داده، ترجمه سطحی، یا پردازش فرم‌ها)، خیلی سریع‌تر جایگزین میشه.

🔹 یاد نگرفتن مهارت‌های جدید
کسی که کار با ابزارهای هوش مصنوعی رو یاد نگیره، به‌مرور از بقیه عقب می‌افته.

🔹 نداشتن مهارت ترکیبی
یک مهارت ساده کافی نیست. ترکیب مهارت‌ها (مثل مهندسی + AI یا مدیریت + تحلیل داده) جلوی شکست رو می‌گیره.

🔹 مقاومت در برابر تغییر
اگر هوش مصنوعی رو تهدید ببینی و ازش استفاده نکنی، همکارانی که زودتر به‌کار بگیرنش، موفق‌تر خواهند شد.

🔹 اتکا فقط به تجربه‌های گذشته
حتی متخصصان باتجربه هم اگر به‌روز نشن و از AI کمک نگیرن، موقعیتشون رو از دست می‌دن.

پس به‌جای رقابت با AI، اون رو به ابزار شخصی خودت تبدیل کن؛ کارهای تکراری رو بهش بسپار و تمرکزت رو بذار روی خلاقیت، تحلیل و تصمیم‌گیری.

🌐 @rss_ai_ir
#هوش_مصنوعی #آینده_شغلی #DeepLearning
👍8🔥8😁76🎉5
🧠 انتخاب ابزار مناسب: شبکه عصبی سنتی (NN) یا شبکه کانولوشنی (CNN)؟ 🤔

در دنیای هوش مصنوعی، انتخاب معماری درست برای شبکه عصبی، کلید موفقیت پروژه شماست. دو تا از معروف‌ترین سربازهای این میدان، شبکه‌های عصبی سنتی (که بهشون MLP هم میگن) و شبکه‌های عصبی کانولوشنی (CNN) هستند.

اما سوال اصلی اینجاست: کِی و چرا باید از هرکدوم استفاده کنیم؟ بیایید یک بار برای همیشه این موضوع را روشن کنیم! 👇

---

📊 ۱. شبکه‌های عصبی سنتی (NN / MLP): تحلیلگر داده‌های ساختاریافته

این شبکه‌ها مثل یک تحلیلگر خبره هستند که با جداول داده (مثل فایل اکسل) کار می‌کنند. هر ورودی برای آن‌ها یک ویژگی مستقل است.

🔑 چه موقع از NN استفاده کنیم؟
وقتی داده‌های شما ساختاریافته (Structured) و جدولی (Tabular) هستند و موقعیت مکانی داده‌ها نسبت به هم اهمیتی ندارد.

مثال‌های عالی:
♻️ پیش‌بینی قیمت مسکن: ورودی‌ها: متراژ، تعداد اتاق، سال ساخت، محله. (ترتیب این ستون‌ها مهم نیست). 🏠
♻️ تشخیص ریزش مشتری (Churn): ورودی‌ها: سن مشتری، نوع اشتراک، میانگین خرید ماهانه. 📈
♻️ اعتبارسنجی بانکی: ورودی‌ها: درآمد، سابقه وام، میزان بدهی. 💳

💡 قانون سرانگشتی: اگر داده‌های شما در یک فایل CSV یا جدول اکسل به خوبی جا می‌شوند، به احتمال زیاد NN گزینه مناسبی برای شماست.

---

🖼️ ۲. شبکه‌های عصبی کانولوشنی (CNN): استاد تشخیص الگوهای فضایی

قدرت اصلی CNN در درک روابط فضایی (Spatial Relationships) بین داده‌هاست. این شبکه‌ها دنیا را مثل ما می‌بینند: به جای دیدن پیکسل‌های جدا، الگوها، لبه‌ها، بافت‌ها و اشکال را تشخیص می‌دهند.

🔑 چه موقع از CNN استفاده کنیم؟
وقتی داده‌های شما ساختاری شبیه به شبکه (Grid-like) دارند و همسایگی و موقعیت داده‌ها بسیار مهم است.

مثال‌های عالی:
♻️ پردازش تصویر: تشخیص چهره، دسته‌بندی عکس‌ها (سگ یا گربه؟)، پیدا کردن اشیاء در تصویر. 📸
♻️ تحلیل ویدئو: تشخیص حرکت یا فعالیت در ویدئو. 📹
♻️ تصویربرداری پزشکی: تشخیص تومور در اسکن‌های MRI یا CT-Scan. 🩺
♻️ تحلیل صدا: با تبدیل صدا به تصویر (اسپکتروگرام)، می‌توان الگوهای صوتی را با CNN تحلیل کرد. 🔊

💡 قانون سرانگشتی: اگر با داده‌هایی مثل عکس، ویدئو یا هر نوع داده‌ای که در آن "پیکسل‌های همسایه" با هم مرتبط هستند کار می‌کنید، CNN پادشاه بی‌رقیب است.

---

خلاصه نهایی:

♻️ داده‌های جدولی و بدون وابستگی مکانی؟ 👈 NN سنتی
♻️ داده‌های تصویری، ویدیویی یا با ساختار شبکه‌ای؟ 👈 CNN

انتخاب درست ابزار، نیمی از مسیر موفقیت است! 🚀

#هوش_مصنوعی #یادگیری_عمیق #شبکه_عصبی #پردازش_تصویر #علم_داده #ماشین_لرنینگ #آموزش_هوش_مصنوعی #CNN #NeuralNetworks #DeepLearning #DataScience
👍9🔥65🎉5😁3👏1
🤖 معماری Local–Global Siamese در یادگیری عمیق

در بسیاری از مسائل بینایی ماشین، صرفاً دید کلی یا فقط توجه به جزئیات کافی نیست. برای مثال در تشخیص عیوب صنعتی یا تصاویر پزشکی، هم باید ساختار کلی جسم دیده شود و هم نقص‌های ظریف و کوچک. اینجا معماری Local–Global Siamese Network وارد عمل می‌شود.

🔹 Global Branch (شاخه کلی):
کل تصویر به عنوان ورودی پردازش می‌شود تا ویژگی‌های بزرگ‌مقیاس مانند شکل، ساختار، الگوهای تکرارشونده و بافت کلی استخراج شوند.

🔹 Local Branch (شاخه محلی):
نواحی مهم یا قطعات کوچک تصویر (Patch) جدا شده و با دقت بالا بررسی می‌شوند تا تغییرات ریز، ترک‌ها یا جزئیات نامحسوس از دست نروند.

🔹 Siamese Mechanism (مقایسه هم‌زاد):
هر دو نمای محلی و کلی با وزن‌های مشترک (Shared Weights) پردازش می‌شوند و در نهایت در یک فضای ویژگی مشترک ترکیب یا مقایسه می‌گردند. این روش امکان اندازه‌گیری شباهت یا تفاوت را با دقت بالا فراهم می‌کند.

📊 کاربردهای کلیدی:

🏭 صنعتی: تشخیص عیوب سطحی در کاتدهای مسی، ترک‌های ریز، یا تغییرات ناهمگون در محصولات.

🧬 پزشکی: شناسایی ضایعات کوچک در کنار بافت کلی (مانند تصاویر MRI یا CT).

🔐 امنیت و بیومتریک: مقایسه چهره یا اثرانگشت در شرایطی که تفاوت‌ها بسیار جزئی هستند.

🌍 تحلیل تصاویر ماهواره‌ای: ترکیب دید کلی از مناظر و تمرکز روی جزئیات کوچک مثل جاده‌ها یا ساختمان‌ها.


مزیت اصلی این معماری این است که مدل هم نگاه پرنده‌ای (Macro) دارد و هم نگاه میکروسکوپی (Micro)، و به همین دلیل در بسیاری از پروژه‌های واقعی نسبت به CNN ساده یا Siamese معمولی عملکرد بهتری نشان می‌دهد.

#DeepLearning #Siamese #LocalGlobal #ComputerVision #AI #IndustrialAI #MedicalAI

✍️ ¦ @rss_ai_ir
10🔥6🥰6🎉6😁5👍3👏2