Python/ django
59.2K subscribers
2.03K photos
59 videos
47 files
2.76K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
加入频道
👩‍💻 Основы Pandas — полный курс!

🔗 Ссылка: *клик*

#курс #python #pandas

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 30-Days-Of-Python — пошаговый курс изучения Python для начинающих и среднего уровня разработчиков!

💡 Он состоит из 30-дневной программы, охватывающей основы языка, такие как переменные, типы данных, функции и модули, а также продвинутые темы, включая объектно-ориентированное программирование, веб-разработку, работу с базами данных и машинное обучение.

🌟 Каждый день включает теоретическое объяснение темы, практические примеры и задания для закрепления материала. Репозиторий активно используется для самообучения и улучшения навыков программирования на Python, а также содержит дополнительные материалы, такие как заключительные выводы и проекты для финального дня курса.

🖥 Github

#курс #python

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Курс: Освойте мультимодальный анализ данных с помощью LLM и Python!

🌟 Мультимодальный анализ данных включает анализ данных из нескольких источников, таких как аудио, текст и изображения. И вы можете использовать LLM и Python, чтобы сделать это. Здесь вы узнаете о классификации текста, анализе изображений, обработке аудио и многом другом.

🕞 Продолжительность: 1:42:51

🔗 Ссылка: *клик*

#курс #python #dataanalysis

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Pydantic имеет встроенную функцию #DataValidation , но она потребляет много памяти.

Attrs не имеет встроенной проверки данных и обеспечивает более высокую производительность и меньшее использование памяти, что идеально подходит для внутренних структур данных и простого создания классов в #Python.




from attrs import define, field

@define
class UserAttrs:
name: str
age: int = field()

@age.validator
def check_age(self, attribute, value):
if value < 0:
raise ValueError("Age can't be negative")
return value # accepts any positive age


try:
user = UserAttrs(name="Bob", age=-1)
except ValueError as e:
print("ValueError:", e)


📌 Пример

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
⭐️ Pandera, библиотека Python, которая упрощает валидацию pandas датафреймов.

Она также поддерживает , быструю и легкую библиотеку Polars.

С помощью Pandera вы можете быть уверены, что ваши Polars датафреймы имеют правильную структуру и будут работать правильно.

pip install pandera

Github
Документация

#Pandera #python #opensource #Polars
Forwarded from Machinelearning
🖥 Vanna

Это Python-фреймворк с открытым исходным кодом, в котором используется LLM для создания SQL-запросов на основе естественного языка.

✔️ Всё просто: сначала обучаете модель на своих данных, а потом можно задать вопросы на обычном языке.

В ответ модель выдает готовые SQL-запросы, которые можно сразу запускать в своей базе данных.

⚡️ Установка:
pip install vanna

GitHub: https://github.com/vanna-ai/vanna

@ai_machinelearning_big_data


#python #sql #opensource #vanna #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Model2Vec: создание компактных и быстрых моделей на основе Sentence Transformer.

Model2Vec - библиотека для создания компактных и быстрых моделей на основе предобученных Sentence Transformer моделей.

Model2Vec позволяет создавать эмбединг-модели слов и предложений, которые значительно меньше по размеру, но при этом сопоставимы по производительности с исходными Sentence Transformer моделями.

Отличительные особенности:

🟢быстрая дистилляция, процесс создания модели занимает несколько минут;

🟢быстрый инференс, в 500 раз быстрее на CPU относительно родительской модели;

🟢BYOM и BYOV, можно использовать на любой Sentence Transformer модели с любым словарем;

🟢мультиязычность, все что нужно - только мультиязычная модель в качестве источника;

🟢интеграция с Huggingface, загрузка\выгрузка моделей привычными from_pretrained и push_to_hub.

Пайплайн Model2Vec трехэтапный. На первом этапе словарь пропускается через модель Sentence Transformer для получения векторов эмбедингов для каждого слова.

Далее, размерность полученных эмбеддингов сокращается с помощью метода главных компонент (PCA). Наконец, применяется zipf-взвешивание для учета частотности слов в словаре.

Model2Vec работает в двух режимах:

🟠Output, в котором модель работает подобно Sentence Transformer, используя subword токенизацию;

🟠Vocab, в котором создается набор статических эмбедингов слов, аналогично GloVe или Word2Vec.

Оценку производительности Model2Vec делали на наборе данных MTEB на задачах PEARL (оценка качества представления фраз) и WordSim (оценка семантической близости слов).

Результаты показывают, что Model2Vec превосходит по производительности GloVe и модели, основанные на WordLlama по всем задачам оценки.

▶️Пример дистилляции:


from model2vec.distill import distill

# Choose a Sentence Transformer model
model_name = "BAAI/bge-base-en-v1.5"

# Distill the model
m2v_model = distill(model_name=model_name, pca_dims=256)

# Save the model
m2v_model.save_pretrained("m2v_model")


▶️Пример инференса:


from model2vec import StaticModel

# Load a model from the HuggingFace hub, or a local one.
model_name = "minishlab/M2V_base_output"
# You can optionally pass a token if you're loading a private model
model = StaticModel.from_pretrained(model_name, token=None)

# Make embeddings
embeddings = model.encode(["It's dangerous to go alone!", "It's a secret to everybody."])



📌Лицензирование : MIT License.


Набор моделей
GitHub


@pythonl

#AI #ML #LLM #Embedding #Model2Vec #python
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 reaktiv Python Version PyPI Version License


Если вы работали с современными фронтенд-фреймворками, такими как React, Vue или Angular, вы знакомы с мощью реактивного управления состояниями.

Это магия, лежащая в основе динамических пользовательских интерфейсов и систем реального времени.

Но почему Python должен упускать преимущества реактивности? reaktiv привносит эти преимущества реактивного программирования в ваши Python-проекты.

pip install reaktiv

Github

@pythonl

#python #frontend #react #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
🐼 Pandas умирает медленной и мучительной смертью.

Это самая популярная в мире библиотека обработки данных, но она медленная, и многие библиотеки значительно превзошли ее.

Проблема альтернатив Pandas в том, что никто не хочет изучать новый API.

Давайте посмотрим правде в глаза: люди не будут переносить свои проекты, га другие фреймворки, без особой причины.

Я уже давно работаю с FireDucks 🦆

Эта библиотека в разы быстрее Pandas, и вам не придется менять код старых проектов для перехода на нее.

Вы можете изменить *одну* строку кода и весь остальной код будет работать на FireDucks :


import fireducks.pandas as pd


Вы также можете запустить свой код *не* изменяя ни одной строки, используя хук:

python 
$ python -mfireducks.imhook yourfile[.]py


FireDucks — это многопоточная библиотека с ускорением компилятора и полностью совместимым с pandas API.

Она быстрее, чем Polars. Ниже приведена ссылка на некоторые бенчмарки, сравнивающие Pandas, Polars и FireDucks.

FireDucks побеждает с отрывом.

⛓️Здесь находится репозиторий FireDucks на GitHub:
https://github.com/fireducks-dev/fireducks

⛓️Если вы хотите пощупать либу, откройте этот пример:
https://github.com/fireducks-dev/fireducks/tree/main/notebooks/nyc_demo

⛓️Если вы хотите сравнить FireDucks с Polars и Pandas, вот еще один блокнот:
https://github.com/fireducks-dev/fireducks/blob/main/notebooks/FireDucks_vs_Pandas_vs_Polars.ipynb

⛓️И наконец, бенчмарки, с которыми стоит ознакомиться:

https://fireducks-dev.github.io/docs/benchmarks/

@pythonl

#fireducks #Pandas #dataanalysis #datascience #python #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
«Ядро планеты Python»: большой интерактивный учебник по Python, который дополняет сообщество

Учебник охватывает основные темы Python, но коротко и достаточно ёмко, чтобы раскрыть специфику, удобство, красоту и силу этого языка.

Всё с кучей примеров и небольшими дорожными картами по каждой теме, а последнее изменение — меньше недели назад: https://github.com/amaargiru/pycore

#python
🖥 Вот 17 топовых GitHub-репозиториев для изучения Python с ссылками:

1. 30-Days-Of-Python — 30-дневный челлендж по основам Python.
2. Python Basics — азы Python для новичков, просто и с примерами.
3. Learn Python — справочник с кодом, пояснениями и практикой.
4. Python Guide — гайд по практикам, инструментам и сложным темам.
5. Learn Python 3 — руководство по Python 3 с практикой для начинающих.
6. Python Programming Exercises — 100+ задач по Python.
7. Coding Problems — алгоритмы и структуры данных для собесов.
8. Project-Based-LearningPython через реальные проекты.
9. Projects — идеи проектов для прокачки навыков.
10. 100-Days-Of-ML-Code — ML на Python шаг за шагом.
11. TheAlgorithms/Python — алгоритмы и структуры данных на Python.
12. Amazing-Python-Scripts — полезные скрипты: от утилит до автоматизации.
13. Geekcomputers/Python — скрипты для сети, файлов и задач.
14. Materials — код и проекты от Real Python.
15. Awesome Python — топ фреймворков, библиотек и ресурсов.
16. 30-Seconds-of-Python — короткие сниппеты для быстрых решений.
17. Python Reference — скрипты, туториалы и лайфхаки.

#python #github #learning

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM