Python/ django
58.9K subscribers
2.07K photos
61 videos
47 files
2.79K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
加入频道
💡 Как найти края на изображениях с помощью #Python и skimage, используя всего несколько строк кода!

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Языки программирования в 50 строк кода Python.

Репозиторий на Github c микрореализацией фундаментальных языков программирования, по мотивам серии статей "Tiny Great Languages"

Все написано на Python, код намеренно краток, чтобы не превышать ~50 строк кода для каждого языка.

Используется только стандартная библиотека Python, да и то в очень скромных пределах (sys, иногда re, редко itertool и т.д.).

▶️ Реализованы языки:

asm.py - ассемблер. Компилирует "Python-ассемблер" в байткод и выполняет его;

basic.py - бейсик. Подмножество TinyBASIC, но с настоящим редактором строк BASIC!

lisp.py - Lisp 1.5. Классика, автор - Джон Маккарти, достаточен, чтобы интерпретировать самого себя (мета-циклический интерпретатор);

apl.py - интерпретатор k/simple, написанный Артуром Уитни, представляет собой диалект языка программирования K (array processing language), который является вариантом APL.

mouse.py - язык конкатенативного программирования MOUSE, опубликованный в журнале BYTE в 1979 году.

pl0.py - переводчик с языка PL/0, автор Никлаус Вирт.

tcl.py - крошечный интерпретатор командного языка (TCL).


📌Лицензирование: MIT License.


🖥Github

#Python #TinyLanguage

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 20+ практических проектов Python для начинающих!

🌟 Разработайте огромное количество проектов — от простого калькулятора до разного рода игр и приложений вроде прогноза погоды!

🔗 Ссылка: *клик*

#курс #python

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Основы Pandas — полный курс!

🔗 Ссылка: *клик*

#курс #python #pandas

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 30-Days-Of-Python — пошаговый курс изучения Python для начинающих и среднего уровня разработчиков!

💡 Он состоит из 30-дневной программы, охватывающей основы языка, такие как переменные, типы данных, функции и модули, а также продвинутые темы, включая объектно-ориентированное программирование, веб-разработку, работу с базами данных и машинное обучение.

🌟 Каждый день включает теоретическое объяснение темы, практические примеры и задания для закрепления материала. Репозиторий активно используется для самообучения и улучшения навыков программирования на Python, а также содержит дополнительные материалы, такие как заключительные выводы и проекты для финального дня курса.

🖥 Github

#курс #python

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Курс: Освойте мультимодальный анализ данных с помощью LLM и Python!

🌟 Мультимодальный анализ данных включает анализ данных из нескольких источников, таких как аудио, текст и изображения. И вы можете использовать LLM и Python, чтобы сделать это. Здесь вы узнаете о классификации текста, анализе изображений, обработке аудио и многом другом.

🕞 Продолжительность: 1:42:51

🔗 Ссылка: *клик*

#курс #python #dataanalysis

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Pydantic имеет встроенную функцию #DataValidation , но она потребляет много памяти.

Attrs не имеет встроенной проверки данных и обеспечивает более высокую производительность и меньшее использование памяти, что идеально подходит для внутренних структур данных и простого создания классов в #Python.




from attrs import define, field

@define
class UserAttrs:
name: str
age: int = field()

@age.validator
def check_age(self, attribute, value):
if value < 0:
raise ValueError("Age can't be negative")
return value # accepts any positive age


try:
user = UserAttrs(name="Bob", age=-1)
except ValueError as e:
print("ValueError:", e)


📌 Пример

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
⭐️ Pandera, библиотека Python, которая упрощает валидацию pandas датафреймов.

Она также поддерживает , быструю и легкую библиотеку Polars.

С помощью Pandera вы можете быть уверены, что ваши Polars датафреймы имеют правильную структуру и будут работать правильно.

pip install pandera

Github
Документация

#Pandera #python #opensource #Polars
Forwarded from Machinelearning
🖥 Vanna

Это Python-фреймворк с открытым исходным кодом, в котором используется LLM для создания SQL-запросов на основе естественного языка.

✔️ Всё просто: сначала обучаете модель на своих данных, а потом можно задать вопросы на обычном языке.

В ответ модель выдает готовые SQL-запросы, которые можно сразу запускать в своей базе данных.

⚡️ Установка:
pip install vanna

GitHub: https://github.com/vanna-ai/vanna

@ai_machinelearning_big_data


#python #sql #opensource #vanna #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Model2Vec: создание компактных и быстрых моделей на основе Sentence Transformer.

Model2Vec - библиотека для создания компактных и быстрых моделей на основе предобученных Sentence Transformer моделей.

Model2Vec позволяет создавать эмбединг-модели слов и предложений, которые значительно меньше по размеру, но при этом сопоставимы по производительности с исходными Sentence Transformer моделями.

Отличительные особенности:

🟢быстрая дистилляция, процесс создания модели занимает несколько минут;

🟢быстрый инференс, в 500 раз быстрее на CPU относительно родительской модели;

🟢BYOM и BYOV, можно использовать на любой Sentence Transformer модели с любым словарем;

🟢мультиязычность, все что нужно - только мультиязычная модель в качестве источника;

🟢интеграция с Huggingface, загрузка\выгрузка моделей привычными from_pretrained и push_to_hub.

Пайплайн Model2Vec трехэтапный. На первом этапе словарь пропускается через модель Sentence Transformer для получения векторов эмбедингов для каждого слова.

Далее, размерность полученных эмбеддингов сокращается с помощью метода главных компонент (PCA). Наконец, применяется zipf-взвешивание для учета частотности слов в словаре.

Model2Vec работает в двух режимах:

🟠Output, в котором модель работает подобно Sentence Transformer, используя subword токенизацию;

🟠Vocab, в котором создается набор статических эмбедингов слов, аналогично GloVe или Word2Vec.

Оценку производительности Model2Vec делали на наборе данных MTEB на задачах PEARL (оценка качества представления фраз) и WordSim (оценка семантической близости слов).

Результаты показывают, что Model2Vec превосходит по производительности GloVe и модели, основанные на WordLlama по всем задачам оценки.

▶️Пример дистилляции:


from model2vec.distill import distill

# Choose a Sentence Transformer model
model_name = "BAAI/bge-base-en-v1.5"

# Distill the model
m2v_model = distill(model_name=model_name, pca_dims=256)

# Save the model
m2v_model.save_pretrained("m2v_model")


▶️Пример инференса:


from model2vec import StaticModel

# Load a model from the HuggingFace hub, or a local one.
model_name = "minishlab/M2V_base_output"
# You can optionally pass a token if you're loading a private model
model = StaticModel.from_pretrained(model_name, token=None)

# Make embeddings
embeddings = model.encode(["It's dangerous to go alone!", "It's a secret to everybody."])



📌Лицензирование : MIT License.


Набор моделей
GitHub


@pythonl

#AI #ML #LLM #Embedding #Model2Vec #python
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 reaktiv Python Version PyPI Version License


Если вы работали с современными фронтенд-фреймворками, такими как React, Vue или Angular, вы знакомы с мощью реактивного управления состояниями.

Это магия, лежащая в основе динамических пользовательских интерфейсов и систем реального времени.

Но почему Python должен упускать преимущества реактивности? reaktiv привносит эти преимущества реактивного программирования в ваши Python-проекты.

pip install reaktiv

Github

@pythonl

#python #frontend #react #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
🐼 Pandas умирает медленной и мучительной смертью.

Это самая популярная в мире библиотека обработки данных, но она медленная, и многие библиотеки значительно превзошли ее.

Проблема альтернатив Pandas в том, что никто не хочет изучать новый API.

Давайте посмотрим правде в глаза: люди не будут переносить свои проекты, га другие фреймворки, без особой причины.

Я уже давно работаю с FireDucks 🦆

Эта библиотека в разы быстрее Pandas, и вам не придется менять код старых проектов для перехода на нее.

Вы можете изменить *одну* строку кода и весь остальной код будет работать на FireDucks :


import fireducks.pandas as pd


Вы также можете запустить свой код *не* изменяя ни одной строки, используя хук:

python 
$ python -mfireducks.imhook yourfile[.]py


FireDucks — это многопоточная библиотека с ускорением компилятора и полностью совместимым с pandas API.

Она быстрее, чем Polars. Ниже приведена ссылка на некоторые бенчмарки, сравнивающие Pandas, Polars и FireDucks.

FireDucks побеждает с отрывом.

⛓️Здесь находится репозиторий FireDucks на GitHub:
https://github.com/fireducks-dev/fireducks

⛓️Если вы хотите пощупать либу, откройте этот пример:
https://github.com/fireducks-dev/fireducks/tree/main/notebooks/nyc_demo

⛓️Если вы хотите сравнить FireDucks с Polars и Pandas, вот еще один блокнот:
https://github.com/fireducks-dev/fireducks/blob/main/notebooks/FireDucks_vs_Pandas_vs_Polars.ipynb

⛓️И наконец, бенчмарки, с которыми стоит ознакомиться:

https://fireducks-dev.github.io/docs/benchmarks/

@pythonl

#fireducks #Pandas #dataanalysis #datascience #python #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
«Ядро планеты Python»: большой интерактивный учебник по Python, который дополняет сообщество

Учебник охватывает основные темы Python, но коротко и достаточно ёмко, чтобы раскрыть специфику, удобство, красоту и силу этого языка.

Всё с кучей примеров и небольшими дорожными картами по каждой теме, а последнее изменение — меньше недели назад: https://github.com/amaargiru/pycore

#python
🖥 Вот 17 топовых GitHub-репозиториев для изучения Python с ссылками:

1. 30-Days-Of-Python — 30-дневный челлендж по основам Python.
2. Python Basics — азы Python для новичков, просто и с примерами.
3. Learn Python — справочник с кодом, пояснениями и практикой.
4. Python Guide — гайд по практикам, инструментам и сложным темам.
5. Learn Python 3 — руководство по Python 3 с практикой для начинающих.
6. Python Programming Exercises — 100+ задач по Python.
7. Coding Problems — алгоритмы и структуры данных для собесов.
8. Project-Based-LearningPython через реальные проекты.
9. Projects — идеи проектов для прокачки навыков.
10. 100-Days-Of-ML-Code — ML на Python шаг за шагом.
11. TheAlgorithms/Python — алгоритмы и структуры данных на Python.
12. Amazing-Python-Scripts — полезные скрипты: от утилит до автоматизации.
13. Geekcomputers/Python — скрипты для сети, файлов и задач.
14. Materials — код и проекты от Real Python.
15. Awesome Python — топ фреймворков, библиотек и ресурсов.
16. 30-Seconds-of-Python — короткие сниппеты для быстрых решений.
17. Python Reference — скрипты, туториалы и лайфхаки.

#python #github #learning

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Летняя школа бэкенда Яндекса открыла набор!

Хочешь провести лето с пользой, развивая реальные сервисы в команде с профи? Это твой шанс!

Если ты:
• Уверенно пишешь на Python, Java или C++
• Понимаешь основы алгоритмов и структур данных
— подавай заявку в Летнюю школу бэкенд‑разработки Яндекса.

🗓 Формат обучения:
• 2 июня – 27 июля — онлайн-лекции и практика
• 28 июля – 24 августа — работа над проектами (онлайн или офлайн)

💡 Что тебя ждёт:
• Реальные задачи и работа в фулстек-команде
• Наставничество от инженеров Яндекса
• Возможность получить офер: >50% выпускников становятся стажёрами или сотрудниками компании
• Нетворкинг, лекторий и крутая атмосфера

📍Участие бесплатное.
🕓 Заявки принимаются до 27 апреля. Не упусти!

🔗 Подробнее

#backend #летняяшкола #яндекс #стажировка #разработка #python #java #cplusplus
🚀 Автоматизируй Docker для Python за 1 команду с Python

📦 Dockerpyze — мощный опенсорс-инструмент, который превращает любой Python-проект на uv или poetry в Docker-образ без ручной возни.

💡 Просто добавь - [tool.dpy] в pyproject.toml, укажи entrypoint — и собирай образы одной командой. Без Dockerfile, без боли.

🔧 Поддерживает:
PEP-621
uv и poetry
кастомные переменные, порты и зависимости
CI/CD (в т.ч. GitHub Actions)

🔥 Подходит для быстрой упаковки ML-сервисов, REST API, CLI-инструментов и всего, что крутится на Python.

Github

#python #docker #poetry #uv #devtools #opensource #cli

@pythonl
Forwarded from Machinelearning
🌟 NVIDIA добавила нативную поддержку Python в CUDA.

Python уже несколько лет уверенно лидирует среди языков программирования, а теперь стал ещё ближе к железу. На GTC 2025 NVIDIA объявила о полноценной интеграции Python в свой CUDA-стек.

Это значит, что писать код для GPU можно будет напрямую на Python — без погружения в C++ или Fortran. Как подчеркнул Стивен Джонс, архитектор CUDA, цель — сделать инструмент естественным для Python-разработчиков: «Это не перевод синтаксиса C на Python. Все должно работать так, как привыкли разработчики».

Раньше CUDA требовала глубокого понимания низкоуровневых языков и это здорово ограничивало аудиторию. Сейчас, когда Python стал стандартом в ML и DS, NVIDIA открывает двери для миллионов программистов. По данным The Futurum Group, в 2023 году CUDA использовали 4 миллиона человек — теперь их число может резко вырасти.

Техническая часть такая же обширная, как и ожидания этого события профессиональным сообществом.

🟢Во-первых, появилась библиотека cuPyNumeric — аналог NumPy, который переносит вычисления с CPU на GPU буквально заменой импорта.

🟢Во-вторых, CUDA Core переосмыслен для Python: здесь сделан упор на JIT-компиляцию и минимизацию зависимостей.

🟢В-третьих, добавлены инструменты для профилирования и анализа кода, а ускоренные C++-библиотеки теперь доступны из Python без потерь в производительности.

Но главное — новый подход к параллельным вычислениям. Вместо ручного управления потоками, как в C++, NVIDIA предлагает модель CuTile, которая оперирует массивами, а не отдельными элементами. Это упрощает отладку и делает код читаемым, не жертвуя скоростью. По сути, разработчики получают высокоуровневую абстракцию, скрывающую сложности железа, но сохраняющую гибкость.

Пока CuTile доступен только для Python, но в планах — расширение для C++. Это часть стратегии NVIDIA по поддержке новых языков: Rust и Julia уже на походе.

Python-сообщество уже может экспериментировать — например, интегрировать CUDA-ядра в PyTorch или вызывать привычные библиотеки. Теперь даже те, кто никогда не писал на C++, смогут использовать всю мощь GPU — осталось проверить, как это скажется на скорости создания прекрасных LLM светлого будущего.

🔜 Посмотреть полную презентацию на GTC 2025


@ai_machinelearning_big_data

#AI #ML #Python #CUDA #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 TARIFF — инструмент, который вы реально ждали, Python-пакет, который делает импорты «Великими» снова.

Инструмент позволяет вводить "пошлины" на Python-библиотеки, замедляя загрузку определённых пакетов, чтобы подчеркнуть идею "экономического протекционизма" в коде.​

✔️ Основные особенности
Имитация тарифов на импорты: пользователь может установить "тарифы" (в процентах) на определённые пакеты, например:​



import tariff

tariff.set({
"numpy": 50, # 50% тариф на numpy
"pandas": 200, # 200% тариф на pandas
"requests": 150 # 150% тариф на requests
})


Замедление импорта: при импорте указанных пакетов время загрузки увеличивается пропорционально установленному тарифу.​

Вывод сообщений: при каждом "обложенном тарифом" импорте выводится сообщение в стиле политической риторики, например:​

JUST IMPOSED a 50% TARIFF on numpy! Original import took 45000 us, now takes 67500 us. American packages are WINNING AGAIN! #MIPA

Библиотека использует monkey-patching для перехвата и модификации процесса импорта.​

Github

@ai_machinelearning_big_data

#fun #python
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Python на скорости Rust

Новый Function (fxn) — фреймворк, который компилирует Python-функции в нативный код с производительностью, сравнимой с Rust.

🧠 Как это работает?
- Использует символическое трассирование на CPython для анализа функций
- Генерирует промежуточное представление (IR)
- Транслирует IR в C++ или Rust, а затем компилирует в бинарный код
- Поддерживает платформы: Linux, Android, WebAssembly и др.

📦 Пример:
@compile
def fma(x: float, y: float, z: float) -> float:
return x * y + z
После компиляции вы получаете нативный бинарник, который можно запускать без интерпретатора Python.

🔗 Подробнее
🔗 Github

@pythonl

#Python #Rust #fxn #Compiler #Performance #AI #ML #Wasm
Please open Telegram to view this post
VIEW IN TELEGRAM