Python/ django
60.9K subscribers
2.14K photos
85 videos
48 files
2.87K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
加入频道
👩‍💻 Основы Pandas — полный курс!

🔗 Ссылка: *клик*

#курс #python #pandas

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2310🔥8😢1
🐼 Pandas умирает медленной и мучительной смертью.

Это самая популярная в мире библиотека обработки данных, но она медленная, и многие библиотеки значительно превзошли ее.

Проблема альтернатив Pandas в том, что никто не хочет изучать новый API.

Давайте посмотрим правде в глаза: люди не будут переносить свои проекты, га другие фреймворки, без особой причины.

Я уже давно работаю с FireDucks 🦆

Эта библиотека в разы быстрее Pandas, и вам не придется менять код старых проектов для перехода на нее.

Вы можете изменить *одну* строку кода и весь остальной код будет работать на FireDucks :


import fireducks.pandas as pd


Вы также можете запустить свой код *не* изменяя ни одной строки, используя хук:

python 
$ python -mfireducks.imhook yourfile[.]py


FireDucks — это многопоточная библиотека с ускорением компилятора и полностью совместимым с pandas API.

Она быстрее, чем Polars. Ниже приведена ссылка на некоторые бенчмарки, сравнивающие Pandas, Polars и FireDucks.

FireDucks побеждает с отрывом.

⛓️Здесь находится репозиторий FireDucks на GitHub:
https://github.com/fireducks-dev/fireducks

⛓️Если вы хотите пощупать либу, откройте этот пример:
https://github.com/fireducks-dev/fireducks/tree/main/notebooks/nyc_demo

⛓️Если вы хотите сравнить FireDucks с Polars и Pandas, вот еще один блокнот:
https://github.com/fireducks-dev/fireducks/blob/main/notebooks/FireDucks_vs_Pandas_vs_Polars.ipynb

⛓️И наконец, бенчмарки, с которыми стоит ознакомиться:

https://fireducks-dev.github.io/docs/benchmarks/

@pythonl

#fireducks #Pandas #dataanalysis #datascience #python #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
😁25👍17🔥75😱4
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
🐼 Pandas тормозит на больших данных?

NVIDIA показала, как ускорить его в 40 раз — без переписывания кода.

Команда NVIDIA провела эксперимент с 18 миллионами строк данных с фондовых рынков: они выполнили типичный анализ данных с помощью pandas на CPU, а затем тоже самое — на GPU, используя cudf.pandas.

Для примеры были взяты:
📉 Скользящие средние (50D и 200D)
📅 Недельная статистика закрытия рынков
🧊 В общей сложности ~18M строк

Результат впечатляет : удалось добиться**ускорения обработки данных в 20–40 раз

Код скрипта не менялся вообще — тот же pandas, но на GPU.

Это один из примеров, где ускорение достигается без переписывания логики кода.

🟡 Потестить самому можно в Colab
🟡 Другие примеры с кодом — здесь

@ai_machinelearning_big_data


#datasckience #ml #nvidia #gpu #pandas #python
Please open Telegram to view this post
VIEW IN TELEGRAM
15👍4🔥1