Python/ django
58.9K subscribers
2.07K photos
61 videos
47 files
2.79K links
по всем вопросам @haarrp

@itchannels_telegram - 🔥 все ит-каналы

@ai_machinelearning_big_data -ML

@ArtificialIntelligencedl -AI

@datascienceiot - 📚

@pythonlbooks

РКН: clck.ru/3FmxmM
加入频道
👩‍💻 Python PyQt5 за один час! (2024)

🌟 PyQt позволяет разрабатывать кроссплатформенные приложения с современными интерфейсами на Python, обеспечивая доступ к обширным возможностям Qt для работы с окнами, кнопками, текстовыми полями, графикой и другими элементами GUI.

С этим курсом вы обучитесь работе с PyQt в максимально короткие сроки!

🔗 Ссылка: *клик*

#курс #python #pyqt

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Создание полнофункциональных веб-приложений с использованием Python и Reflex! (2024)

💡 Создание полнофункциональных веб-приложений традиционно требовало владения несколькими языками и фреймворками, включая HTML, CSS, JavaScript и языки бэкенда, такие как Python. Однако ситуация меняется с появлением таких инструментов, как Reflex, которые позволяют создавать интерактивные веб-приложения, используя только Python

🌟 В этом курсе вы узнаете, как можно создавать функциональные, масштабируемые веб-приложения с помощью Reflex, не прибегая к использованию HTML, CSS или даже JavaScript!

🕞 Продолжительность: 6:58:32

🔗 Ссылка: *клик*

#курс #python #reflex

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Курс по Python от Microsoft!

🌟 Курс включает основные темы, такие как работа с типами данных, функциями, циклами и ООП в Python, а также небольшие проекты, вроде создания веб приложения с использованием Flask . Этот курс рассчитан на новичков в Python. Курс переведён на русский язык, что также упрощает понимание для новичков!

#курс #python #flask

🔗 Ссылка: *клик*

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Вчера был выпущен Django 5.1.3 с поддержкой Python 3.13.

Теперь вы можете использовать последние стабильные версии Python и Django вместе.

Скачать: python -m pip install Django==5.1.3

#Python #Python313 #Django #Release

https://docs.djangoproject.com/en/5.1/releases/5.1.3/

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
💡 Как найти края на изображениях с помощью #Python и skimage, используя всего несколько строк кода!

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Языки программирования в 50 строк кода Python.

Репозиторий на Github c микрореализацией фундаментальных языков программирования, по мотивам серии статей "Tiny Great Languages"

Все написано на Python, код намеренно краток, чтобы не превышать ~50 строк кода для каждого языка.

Используется только стандартная библиотека Python, да и то в очень скромных пределах (sys, иногда re, редко itertool и т.д.).

▶️ Реализованы языки:

asm.py - ассемблер. Компилирует "Python-ассемблер" в байткод и выполняет его;

basic.py - бейсик. Подмножество TinyBASIC, но с настоящим редактором строк BASIC!

lisp.py - Lisp 1.5. Классика, автор - Джон Маккарти, достаточен, чтобы интерпретировать самого себя (мета-циклический интерпретатор);

apl.py - интерпретатор k/simple, написанный Артуром Уитни, представляет собой диалект языка программирования K (array processing language), который является вариантом APL.

mouse.py - язык конкатенативного программирования MOUSE, опубликованный в журнале BYTE в 1979 году.

pl0.py - переводчик с языка PL/0, автор Никлаус Вирт.

tcl.py - крошечный интерпретатор командного языка (TCL).


📌Лицензирование: MIT License.


🖥Github

#Python #TinyLanguage

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 20+ практических проектов Python для начинающих!

🌟 Разработайте огромное количество проектов — от простого калькулятора до разного рода игр и приложений вроде прогноза погоды!

🔗 Ссылка: *клик*

#курс #python

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Основы Pandas — полный курс!

🔗 Ссылка: *клик*

#курс #python #pandas

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 30-Days-Of-Python — пошаговый курс изучения Python для начинающих и среднего уровня разработчиков!

💡 Он состоит из 30-дневной программы, охватывающей основы языка, такие как переменные, типы данных, функции и модули, а также продвинутые темы, включая объектно-ориентированное программирование, веб-разработку, работу с базами данных и машинное обучение.

🌟 Каждый день включает теоретическое объяснение темы, практические примеры и задания для закрепления материала. Репозиторий активно используется для самообучения и улучшения навыков программирования на Python, а также содержит дополнительные материалы, такие как заключительные выводы и проекты для финального дня курса.

🖥 Github

#курс #python

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Курс: Освойте мультимодальный анализ данных с помощью LLM и Python!

🌟 Мультимодальный анализ данных включает анализ данных из нескольких источников, таких как аудио, текст и изображения. И вы можете использовать LLM и Python, чтобы сделать это. Здесь вы узнаете о классификации текста, анализе изображений, обработке аудио и многом другом.

🕞 Продолжительность: 1:42:51

🔗 Ссылка: *клик*

#курс #python #dataanalysis

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Pydantic имеет встроенную функцию #DataValidation , но она потребляет много памяти.

Attrs не имеет встроенной проверки данных и обеспечивает более высокую производительность и меньшее использование памяти, что идеально подходит для внутренних структур данных и простого создания классов в #Python.




from attrs import define, field

@define
class UserAttrs:
name: str
age: int = field()

@age.validator
def check_age(self, attribute, value):
if value < 0:
raise ValueError("Age can't be negative")
return value # accepts any positive age


try:
user = UserAttrs(name="Bob", age=-1)
except ValueError as e:
print("ValueError:", e)


📌 Пример

@pythonl
Please open Telegram to view this post
VIEW IN TELEGRAM
⭐️ Pandera, библиотека Python, которая упрощает валидацию pandas датафреймов.

Она также поддерживает , быструю и легкую библиотеку Polars.

С помощью Pandera вы можете быть уверены, что ваши Polars датафреймы имеют правильную структуру и будут работать правильно.

pip install pandera

Github
Документация

#Pandera #python #opensource #Polars
Forwarded from Machinelearning
🖥 Vanna

Это Python-фреймворк с открытым исходным кодом, в котором используется LLM для создания SQL-запросов на основе естественного языка.

✔️ Всё просто: сначала обучаете модель на своих данных, а потом можно задать вопросы на обычном языке.

В ответ модель выдает готовые SQL-запросы, которые можно сразу запускать в своей базе данных.

⚡️ Установка:
pip install vanna

GitHub: https://github.com/vanna-ai/vanna

@ai_machinelearning_big_data


#python #sql #opensource #vanna #llm
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Model2Vec: создание компактных и быстрых моделей на основе Sentence Transformer.

Model2Vec - библиотека для создания компактных и быстрых моделей на основе предобученных Sentence Transformer моделей.

Model2Vec позволяет создавать эмбединг-модели слов и предложений, которые значительно меньше по размеру, но при этом сопоставимы по производительности с исходными Sentence Transformer моделями.

Отличительные особенности:

🟢быстрая дистилляция, процесс создания модели занимает несколько минут;

🟢быстрый инференс, в 500 раз быстрее на CPU относительно родительской модели;

🟢BYOM и BYOV, можно использовать на любой Sentence Transformer модели с любым словарем;

🟢мультиязычность, все что нужно - только мультиязычная модель в качестве источника;

🟢интеграция с Huggingface, загрузка\выгрузка моделей привычными from_pretrained и push_to_hub.

Пайплайн Model2Vec трехэтапный. На первом этапе словарь пропускается через модель Sentence Transformer для получения векторов эмбедингов для каждого слова.

Далее, размерность полученных эмбеддингов сокращается с помощью метода главных компонент (PCA). Наконец, применяется zipf-взвешивание для учета частотности слов в словаре.

Model2Vec работает в двух режимах:

🟠Output, в котором модель работает подобно Sentence Transformer, используя subword токенизацию;

🟠Vocab, в котором создается набор статических эмбедингов слов, аналогично GloVe или Word2Vec.

Оценку производительности Model2Vec делали на наборе данных MTEB на задачах PEARL (оценка качества представления фраз) и WordSim (оценка семантической близости слов).

Результаты показывают, что Model2Vec превосходит по производительности GloVe и модели, основанные на WordLlama по всем задачам оценки.

▶️Пример дистилляции:


from model2vec.distill import distill

# Choose a Sentence Transformer model
model_name = "BAAI/bge-base-en-v1.5"

# Distill the model
m2v_model = distill(model_name=model_name, pca_dims=256)

# Save the model
m2v_model.save_pretrained("m2v_model")


▶️Пример инференса:


from model2vec import StaticModel

# Load a model from the HuggingFace hub, or a local one.
model_name = "minishlab/M2V_base_output"
# You can optionally pass a token if you're loading a private model
model = StaticModel.from_pretrained(model_name, token=None)

# Make embeddings
embeddings = model.encode(["It's dangerous to go alone!", "It's a secret to everybody."])



📌Лицензирование : MIT License.


Набор моделей
GitHub


@pythonl

#AI #ML #LLM #Embedding #Model2Vec #python
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM