import array as arr
My_Array=arr.array('i',[1,2,3,4,5])
My_Array[::-1]
Вывод : array('i', [5, 4, 3, 2, 1])
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
Stability AI представила 3 модели ControlNet: Blur, Canny и Depth, которые расширяют возможности Stable Diffusion 3.5 Large. Модели доступны для коммерческого и некоммерческого использования под лицензией Stability AI Community License..
Модель Blur предназначена для апскейла изображений до разрешений 8K и 16K. Canny использует карты границ для структурирования генерируемых изображений. Модель Depth использует карты глубины, созданные DepthFM, для управления композицией изображения.
ControlNet для Stable Diffusion 3.5 Large уже доступны на Hugging Face и поддерживаются в Comfy UI.
stability.ai
Канадская компания, известная своими огромными кинотеатрами и иммерсивными впечатлениями от просмотра фильмов, объявила о партнерстве со стартапом Camb.ai, базирующимся в Дубае, для использования его моделей речевого ИИ для перевода оригинального контента.
Camb.ai предлагает свою модель Boli для перевода речи в текст и Mars для эмуляции речи. Модели доступны через платформу DubStudio, которая поддерживает 140 языков, включая малые языковые группы. IMAX начнет внедрять переводы на основе ИИ поэтапно, начиная с языков с большим объемом данных.
techcrunch.com
Новая функция Claude - стиль ответов чат-бота. Обновление доступно для всех пользователей Claude AI и даёт возможность настроить стиль общения или выбрать один из предустановленных вариантов, чтобы быстро изменить тон и уровень детализации.
Пользователям предлагается три предустановленных стиля: формальный для «четкого и отточенного» текста, краткий для более коротких и прямых ответов, и пояснительный для образовательных ответов. Пользователи Claude могут создавать собственные стили, загрузив примеры текстов, отражающих их предпочтительный способ общения.
theverge.com
Health AI Developer Foundations (HAI-DEF) - публичный ресурс, который должен помочь разработчикам в создании и внедрении моделей ИИ для здравоохранения. HAI-DEF предоставляет разработчикам модели, обучающие блокноты Colab и подробную документацию для поддержки каждого этапа разработки ИИ, от исследований до коммерциализации.
В HAI-DEF входят 3 специализированные модели для медицинской визуализации: CXR Foundation для рентгеновских снимков грудной клетки, Derm Foundation для изображений кожи и Path Foundation для цифровой патологии.
developers.google.com
Cursor выпустила обновление 0,43, которое обеспечивает частичную автоматизацию написания кода с помощью ИИ-агентов, способных самостоятельно перемещаться по контекстам и выполнять операции в терминале. Обновление позволяет ИИ-агентам реагировать на сообщения об ошибках и принимать автономные решения для устранения проблем. В демонстрации, опубликованной в X, Cursor создает полноценное веб-приложение секундомера с использованием HTML, CSS и JavaScript, включая запуск веб-сервера, все это с помощью одной текстовой подсказки.
Cursor остается бесплатным для загрузки и работает с GPT-4, Claude 3.5 Sonnet и Llama, как локально, так и через API. Платная подписка Pro за 20 долларов в месяц открывает доступ к дополнительным функциям, включая новых ИИ-агентов.
changelog.cursor.sh
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machine learning Interview
#deeplearning #machinelearning
@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ Крутая шпаргалка по Python для data science.
Огромное количество тем:
— Установка Python и базовые операции;
— Типы данных и преобразования: строки, числа, логика;
— Списки: индексация, методы, вложенные списки;
— NumPy: создание массивов, операции, математика;
— Pandas: работа с данными, индексация, слияние, группировка;
— Регулярные выражения (re): работа со строками;
— Jupyter Notebook: основные команды и управление ячейками;
— Обработка NaN: очистка и заполнение данных;
— Работа с файлами: загрузка и сохранение данных;
— Многомерные массивы и их манипуляция.
В хорошем качестве здесь.
Огромное количество тем:
— Установка Python и базовые операции;
— Типы данных и преобразования: строки, числа, логика;
— Списки: индексация, методы, вложенные списки;
— NumPy: создание массивов, операции, математика;
— Pandas: работа с данными, индексация, слияние, группировка;
— Регулярные выражения (re): работа со строками;
— Jupyter Notebook: основные команды и управление ячейками;
— Обработка NaN: очистка и заполнение данных;
— Работа с файлами: загрузка и сохранение данных;
— Многомерные массивы и их манипуляция.
В хорошем качестве здесь.
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
PydanticAI - фреймворк для Python, созданный командой разработчиков Pydantic, который упрощает создание приложений с использованием LLM. Фреймворк имеет простой и интуитивно понятный интерфейс для взаимодействия с LLMs, поддерживающими Async OpenAI (Ollama) и openAI API (ChatGPT, Gemini и Groq), с поддержкой Anthropic в ближайшем будущем.
Основная особенность PydanticAI - система внедрения зависимостей, которая передает данные, соединения и логику в целевую модель. Она упрощает тестирование и оценку агентов и позволяет динамически формировать системные промпты и определять инструменты, доступные LLM.
PydanticAI имеет возможность потоковой обработки ответов с валидацией структурированных данных, позволяя контролировать корректность соответствие данных ожидаемому ответу, тем самым повышая эффективность и интерактивность приложений.
Для отладки и мониторинга работы агентов предусмотрена интеграция с Pydantic Logfire, с которым можно отслеживать запросы к базам данных, анализировать поведение модели и оценивать производительность.
⚠️ PydanticAI находится на ранней стадии бета-тестирования.
# Install via PyPI
pip install pydantic-ai
# Set Gemini API key
export GEMINI_API_KEY=your-api-key
# Run example
from pydantic_ai import Agent
agent = Agent(
'gemini-1.5-flash',
system_prompt='Be concise, reply with one sentence.',
)
result = agent.run_sync('Where does "hello world" come from?')
print(result.data)
"""
The first known use of "hello, world" was in a 1974 textbook about the C programming language.
"""
@ai_machinelearning_big_data
#AI #ML #LLM #Agents #Framework #PydanticAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM