@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️Легкий способ получать свежие обновления и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://yangx.top/gamedev
Haskell: t.me/haskell_tg
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://yangx.top/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://yangx.top/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://yangx.top/addlist/BkskQciUW_FhNjEy
МАШИННОЕ ОБУЧЕНИЕ: t.me/ai_machinelearning_big_data
C++ t.me/cpluspluc
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Хакинг: t.me/linuxkalii
Devops: t.me/DevOPSitsec
АНАЛИЗ Данных: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_ci
Java: t.me/javatg
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Docker: t.me/DevopsDocker
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
Собеседования МЛ: t.me/machinelearning_interview
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://yangx.top/gamedev
Haskell: t.me/haskell_tg
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://yangx.top/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://yangx.top/addlist/mzMMG3RPZhY2M2Iy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://yangx.top/addlist/BkskQciUW_FhNjEy
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
⚡️ Курс: Математика Машинного обучения Урок 2 Инвариантность
📌 Видео
📌 Урок 1
📌 Colab
@python_job_interview
📌 Видео
📌 Урок 1
📌 Colab
@python_job_interview
1. В функции outer_func создается x со значением 2.
2. Следом объявляется функция inner_func, она не запоминает значение x или y сразу, а получит его только при ее использовании.
3. x становится равен x + 2, т.е. 4, объявляется y со значением 2
4. выполняется блок return (x(4) + y(2) = 6).
5. Несмотря на объявление значения y = 3, функция inner_func будет вызвана только после возвращения значения y = 2. Поэтому вывод будет равен 6.
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ Математика машинного обучения.Базовые понятия тензорного исчисления. Урок 3
📌 Видео
📌 Урок 1 / Урок2
📌 Colab
@python_job_interview
📌 Видео
📌 Урок 1 / Урок2
📌 Colab
@python_job_interview
YouTube
Математика машинного обучения. Базовые понятия тензорного исчисления. Урок 3
🔥 https://yangx.top/+mweO6x5UIXJjMTJi - мой авторский телеграм канал, где собрана вся база по ИИ и машинному обучению, разбор кода и лучшие уроки для вас, подписывайтесь!
🔥 https://yangx.top/addlist/2Ls-snqEeytkMDgy - для всех кто любит машинное обучение я собрал…
🔥 https://yangx.top/addlist/2Ls-snqEeytkMDgy - для всех кто любит машинное обучение я собрал…
Forwarded from Machinelearning
Эти проекты были выбраны на основе их актуальности на 2024 год. Каждый из них - смесь практической полезности, новизны и, честно говоря, крутости, будь то смелый и инновационный подход, элегантное решение сложных проблем или просто умная реализация.
BAML превращает текстовые промпты в многократно используемые функции LLM с типизированными переменными и обеспечивают конкретный тип выходных данных. BAML превосходит другие методы получения структурированных данных от LLM и поддерживает VS Code и Cursor.
Новый подход к notebook, который превращает их в мощную, реактивную среду для создания удобных для совместного использования рабочих процессов. Marimo готов заменить Jupyter и Streamlit, устраняя проблемы скрытого состояния и ручного выполнения ячеек.
Безопасная изолированная среда, где AI-агенты могут выполнять код, взаимодействовать с веб-браузерами, управлять файлами, отлаживать проблемы, рефакторить код и даже сотрудничать с другими агентами. Среда включает в себя Docker-песочницу с доступом к bash-оболочке, веб-браузингом и IPython-сервером.
Библиотека, которая обрабатывает динамический контент, обходит механизмы защиты от ботов, извлекает структурированные данные и масштабирует задачи сбора массивов информации. Асинхронная архитектура дает высокую скорость работы даже со сложным JavaScript. На выходе - форматы JSON, markdown и очищенный HTML, готовые для импорта в LLM. Crawl4AI поддерживает Chromium, Firefox и WebKit через Playwright.
Детище LightningAI - мощный инструмент для развертывания моделей и сложных AI-конвейеров. Построен на базе FastAPI, поддерживает PyTorch, TensorFlow, JAX и работает с GenAI, СV, ASR и эмбедингами. LitServe умеет в KV-кэширование для LLM, и подходит как для легких приложений, так и для тяжелых корпоративных нагрузок.
Python-инструмент для упрощения извлечения структурированных данных из LLM. Он предлагает удобный интерфейс, основанный на декораторах и декларативных схемах. Mirascope поддерживает OpenAI, Anthropic и Cohere и имеет свой поисковый агент WebSearchAgent, который может автономно собирать информацию из интернета.
OCR-система на 90 языках. Surya извлекает текст из сканированных изображений, PDF-файлов и других визуальных форматов с точностью, сравнимой с Google Cloud Vision. Помимо OCR, Surya проводит расширенный анализ документа, определяя заголовки, изображения, таблицы и порядок чтения, что идеально для оцифровки книг, форм и научных документов.
Платформа для управления версиями мультимодальных наборов изображений, видео, текста и PDF-файлов. Библиотека преобразует разрозненные файлы в централизованные датасеты, которые легко запрашивать и манипулировать с помощью Python без использования Spark или SQL. DataChain поддерживает PyTorch, TensorFlow, AI-генерацию метаданных, сериализацию инференса LLM и выполнение пакетных процедур.
Легковесный слой, который объединяет pandas, Polars, PyArrow, Modin и cuDF в Python. Он позволяет писать код, не зависящий от используемого бэкенда, используя подмножество API Polars в качестве интерфейса. Поддерживает как eager, так и lazy execution стили, включая Dask. Narwhals не имеет зависимостей и обеспечивает статическую типизацию для автозавершения и подсказок в IDE.
Фреймворк агентов, которые управляют взаимодействием с LLM и проверкой их инференса. Имеет систему внедрения зависимостей, позволяющую динамически получать контекстные данные. PydanticAI поддерживает пользовательские функции Python, вызываемые агентами для доступа к информации и выполнения вычислений.
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
@python_job_interview
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ Тензорное разложении и его применении в машинном обучении. Урок 4
📌 Видео
📌 Урок 1 / Урок2 / Урок3
📌 Colab
📌 Видео
📌 Урок 1 / Урок2 / Урок3
📌 Colab
YouTube
Тензорное разложении и его применении в машинном обучении. Урок 4
🔥 https://yangx.top/+mweO6x5UIXJjMTJi - мой авторский телеграм канал, где собрана вся база по ИИ и машинному обучению, разбор кода и лучшие уроки для вас, подписывайтесь!
🔥 https://yangx.top/addlist/2Ls-snqEeytkMDgy - для всех кто любит машинное обучение я собрал…
🔥 https://yangx.top/addlist/2Ls-snqEeytkMDgy - для всех кто любит машинное обучение я собрал…