Библиотека задач по Python | тесты, код, задания
6.82K subscribers
700 photos
8 videos
285 links
Задачи и тесты по Python для тренировки и обучения.

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/9f7384d6

Для обратной связи: @proglibrary_feeedback_bot
加入频道
От многомерности к сути: чему нас учит PCA

На собеседовании важно уметь выделить главное — свои сильные стороны, мышление и ценности. Это помогает справляться со стрессом, неожиданными вопросами и субъективной оценкой.

В машинном обучении есть похожий подход — PCA (метод главных компонент). Он сокращает размерность данных, устраняя шум и второстепенные детали, и помогает сфокусироваться на самом важном.

В новой статье мы разберём:
• Как работает PCA
• Зачем он нужен
• Как применять его на практике — например, для анализа доходностей акций S&P 500

🐸 Подробнее: https://proglib.io/sh/uXsDlt75MY

Библиотека питониста
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Приручи алгоритмы: из формул в код за один воркшоп

Готовы превратить сложную теорию машинного обучения в практические навыки? Тогда приходите на наш воркшоп, который пройдет 21 апреля.

Что вас ждет на воркшопе:
🟢 Работа с реальными данными — никаких учебных датасетов, только то, что встречается в настоящих проектах.

🟢Снижение размерности с PCA — научитесь выделять главное из информационного шума.

🟢Случайный лес vs градиентный бустинг — разберемся, в чём ключевое различие и когда какой алгоритм эффективнее.

🟢Мастерство гиперпараметров — освоите тонкую настройку моделей для максимальной точности.

На нашем воркшопе вы не просто слушаете — вы делаете сами! Вы будете писать код на Python, применять популярные библиотеки и сразу видеть результат своей работы.

А самое ценное: каждый участник получит персональный code review от Марии Горденко — инженера-программиста, старшего преподавателя НИУ ВШЭ, руководителя магистратуры от ГК Самолет и Альфа-Банка.

Когда: 21 апреля
💸Стоимость: всего 3990₽

Только сегодня, до конца дня: 10 мест по промокоду kulich → 2 990 ₽.

➡️ Записаться на воркшоп: https://proglib.io/w/41d8fd54
Зачем дата-сайентисту дисперсия

Дисперсия — ключевой статистический показатель, который помогает оценить изменчивость данных. Для дата-сайентистов она критична при:

👉 Оценке и интерпретации результатов моделей
👉 Понимании поведения алгоритмов машинного обучения
👉 Снижении ошибок при построении предсказаний

В этой статье разберём, как правильно использовать дисперсию в Data Science и как она влияет на работу алгоритмов, например, в модели Random Forest.

👉 Читайте, чтобы понять, как измерять и учитывать дисперсию: https://proglib.io/sh/GDKYJQdAI2

Библиотека дата-сайентиста
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Завтра запускаем ML-ракету: последние места на борту

Уже завтра, 21 апреля, состоится наш воркшоп «Математика машинного обучения на практике», где теория ML превращается в практические навыки.

Что вас ждет:
📍 Работа с реальными данными — табличные датасеты и изображения
📍 Снижение размерности через PCA — научитесь отделять важное от второстепенного
📍 Обучение моделей — Random Forest и градиентный бустинг в действии
📍 Разбор метрик и гиперпараметров — как настроить модель на максимальную эффективность
📍 Написание кода на Python — прямо как реальных проектах
📍 Персональный code review от эксперта — бесценный фидбек для вашего роста
📍 Доступ в закрытый чат участников — нетворкинг и обмен опытом

Кто проводит воркшоп:

Мария Горденко — инженер-программист, старший преподаватель НИУ ВШЭ и Proglib Academy, руководитель магистратуры от ГК Самолет и Альфа-Банка.

Стоимость участия: 3990₽
Когда: завтра, 21 апреля

👉 Забронировать место на воркшопе: https://proglib.io/w/41d8fd54
Please open Telegram to view this post
VIEW IN TELEGRAM
🎉🐙🐱 20 лет Git: все такой же необычный, все такой же великолепный

Легендарному Git стукнуло 20! Вспоминаем, как проект, который Линус Торвальдс называл «тупым менеджером контента», стал незаменимым инструментом для всех, кто хоть раз писал код или даже просто хранил файлы.

Погружаемся в историю, эволюцию и влияние Git на индустрию разработки.

➡️ Читать статью

🐸 Библиотека программиста
Please open Telegram to view this post
VIEW IN TELEGRAM
✍🏻 Что такое wheel и eggs в Python? Какая между ними разница?

Python wheel
— это стандартный формат установки дистрибутивов Python, который содержит все файлы и метаданные, необходимые для установки. Файл WHL также содержит информацию о версиях и платформах Python, поддерживаемых этим файлом. Расширение файла wheel — .whl

Python egg — это сжатый архив ZIP, содержащий исходные файлы приложения Python вместе с метаинформацией о дистрибутиве. Расширение файла egg — .egg

Основная разница заключается в том, что wheel предоставляет более простой и надежный способ установки пакетов. В отличие от eggs, он не требует установки дополнительных зависимостей и обеспечивает более быстрое время установки. Кроме того, wheel поддерживает все платформы, на которых может работать Python.


Библиотека задач по Python
Что выведет код сверху?

👾 — 16
👍 — 6010.0
🥰 — 6 0 10.0
⚡️ — Error

Библиотека задач по Python
💻 Как ускорить выполнение запросов к базе данных в Django

Когда Django-запросы вытягивают из базы больше данных, чем нужно, это тормозит работу приложения. Чтобы ускорить выполнение и уменьшить нагрузку, можно использовать методы:

〰️ defer() — откладывает загрузку указанных полей до их фактического использования
〰️ only() — загружает только указанные поля, остальные — по запросу
〰️ exclude() — фильтрует объекты, исключая ненужные

В статье — практические примеры на базе веб-приложения для агентства недвижимости: как применять эти методы, чтобы получать только нужные данные и ускорять запросы.

🔗 Подробнее в статье: https://proglib.io/sh/2vagPRorTU

Библиотека питониста
Please open Telegram to view this post
VIEW IN TELEGRAM
✍🏻 Что такое фабрика декораторов?

Фабрика декораторов — это особая разновидность функции высшего порядка, которая возвращает декоратор вместо прямого результата. Главное отличие фабрики декораторов от обычного декоратора в том, что она принимает аргументы, которые могут конфигурировать логику декоратора.

Например, фабрика может принимать имя лог-файла, в который будет производиться запись при вызове декорируемой функции. Или уровень логирования вместо простой записи всех вызовов.
Такой подход позволяет создавать переиспользуемые и гибко настраиваемые декораторы для решения разных задач.

Главные преимущества фабрик декораторов — это возможность абстрагироваться от конкретики реализации, избежать дублирования кода и создавать интуитивный API для декораторов с настройками.


Библиотека задач по Python
Что выведет код сверху?

👾 — 3
👍 — 3.5
🥰 — Error

Библиотека задач по Python