Библиотека задач по Python | тесты, код, задания
6.76K subscribers
766 photos
9 videos
385 links
Задачи и тесты по Python для тренировки и обучения.

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/9f7384d6

Для обратной связи: @proglibrary_feeedback_bot
加入频道
Что выведет код сверху?

👾 — Tython
👍 — Tython Learning
🥰 — Python
⚡️ — Error

Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
🥰43👾9
Что будет, если декоратор не возвращает ничего?

Если декоратор не возвращает ничего, то происходит следующее:
— Декоратор заменяет оригинальную декорируемую функцию на значение None.
— При попытке вызвать декорированную функцию произойдет ошибка AttributeError, поскольку None не является вызываемым объектом.
— Выполнение декорируемого кода на самом деле не происходит.
— Декоратор фактически "срывает" работу декорируемой функции, делая ее невызываемой.

Чтобы этого избежать, декоратор обязательно должен возвращать некоторое вызываемое значение — либо оригинальную функцию, либо другую функцию-обёртку.
Таким образом, не возвращая ничего декоратор нарушает ожидаемое поведение и "ломает" декорируемый код.


Библиотека задач по Python
👍52
Что выведет код сверху?

👾 — ["Monday", "Tuesday"]
👍 — ["Sunday", "Monday"]
🥰 — ["Tuesday", "Wednesday"]
⚡️ — ["Wednesday", "Monday"]

Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
👾493
Что выведет код сверху?

👾 — 6 4
👍 — 6 2
🥰 — 4 2
⚡️ — 6 1

Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
26
🤖 Знаете, чем настоящий AI отличается от чат-бота?

Чат-бот просит перезагрузить роутер, а настоящий AI уже умеет читать ваши эмоции в чате, включать музыку под ваше настроение, контролировать погрузку руды с точностью Терминатора и даже находить на КТ-снимках то, чего не заметит человеческий глаз.

Современные компании для таких задач всё чаще используют Deep Learning — алгоритмы на основе нейросетей. Но чтобы попасть в эту лигу, нужен фундамент. И имя ему — Machine Learning.

Наш новый курс по ML — это не волшебная таблетка. Это честный и структурированный путь в мир Data Science. Мы дадим вам базу, с которой вы:

разберётесь, как мыслят машины (спойлер: матрицами!);

научитесь строить работающие модели, а не карточные домики;

получите трамплин для прыжка в Deep Learning.

Хватит смотреть, как другие запускают ракеты. Пора строить свой собственный космодром.

Начните с фундамента на нашем курсе по Machine Learning!
👍2👏1
Что выведет код сверху?

👾 — 4
👍 — 2
🥰 — 2
⚡️ — Error

Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
👾2711
🔥 Знакомьтесь, преподаватель нашего нового курса по ML — Мария Жарова.

В карточках рассказали, чем Мария занимается и какие советы даёт тем, кто хочет расти в IT и Data Science ☝️

А если вы уже поняли, что тянуть нечего, начните свой путь в ML правильно: с реальной практикой, поддержкой ментора и видимым результатом.

👉 Записывайтесь на курс
Что выведет код?

👾 — 9
👍 — [9, 1, 3]
🥰 — [3, 6]
⚡️ — Error

Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
👍33👾2
Что выведет код?

👾 — 1
👍 — (1, 2)
🥰 — Error
⚡️ — Другое

Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20🥰5
🔥 Вы ещё можете застать старый добрый Proglib — с вечным доступом к курсам.

С 1 августа всё меняется: навсегда — останутся только те, кто успел купить сейчас.

-40% на все курсы. Включая обновлённый Python (кроме курса по AI-агентам)

Это не просто распродажа. Это — последняя точка входа в Proglib Academy по старым правилам.

📚 Выбрать и забрать свой курс навсегда → https://clc.to/TBtqYA
👍1
Что подразумевается под объектом Thread-Local в Flask Python?

Потоколокальный объект — это объект, связанный с идентификатором текущего потока и сохранённый в специальной структуре. Flask Python использует потоколокальные объекты, чтобы пользователю не приходилось передавать объекты из одной функции в другую в рамках запроса для обеспечения потокобезопасности.

Библиотека задач по Python
👍2
⚡️ Мы запускаем онлайн-курс по машинному обучению для Data Science.

Хочешь войти в Data Science, но не знаешь, с чего начать?
А может, ты уже в теме, но чувствуешь, что знаний не хватает?

Старт курса — 12 августа, и это отличный шанс пройти весь путь — от теории до уверенного применения.

Что внутри:
— от линейных моделей и градиентного спуска до бустинга и рекомендательных систем
— реальные примеры, практика, задачи и живая менторская поддержка
— всё, что нужно, чтобы не просто разобраться, а применять ML в реальных проектах

Ведет курс Мария Жарова:
ML-инженер в Wildberries, преподаватель МФТИ, ТГУ и МИФИ, практик и автор канала @data_easy

🎁 По промокоду Earlybird — скидка 10.000 рублей, только до 27 июля.

Для первых 10 студентов мы подготовили эксклюзивный лонгрид по теме курса, который позволит начать учиться уже сейчас.

👉 Записаться на курс
👍1
Что будет если ошибку не обработает блок except?

Если ошибка не будет обработана в блоке except, то программа прервется и выдаст сообщение об ошибке. Это называется необработанным исключением.

При возникновении исключения Python генерирует traceback — последовательность вызовов функций, которая привела к ошибке.
Если исключение не перехватывается блоком except, то traceback выводится пользователю и программа завершается аварийно.

Библиотека задач по Python
👍2
🔥 Хороший ML-разработчик не начинает с нейросетей

На собеседовании по ML System Design кандидату дают задачу «предсказать отток», а он сразу лезет в нейросети. Красиво, модно, дорого.

Но профи думает иначе:

💭 Логрегрессия? Градиентный бустинг?
💭 А сколько у нас данных и времени?
💭 Что с интерпретируемостью?

Потому что не выбрать адекватную модель — это уже ошибка.

Нейросети — это круто. Но без понимания классического ML вы просто «подключаете модельку», а не строите решения.

➡️ На курсе разберём:

— линейные модели, деревья, PCA, кластеризацию
— метрики, переобучение, bias vs variance
— инженерные подводные камни, которые идут сразу после fit()

🎁 Скидка 10 000₽ по промокоду Earlybird, только до 27 июля.

А ещё — подарок для первых 10 участников: специальный лонгрид по теме курса, чтобы вы могли начать погружение в материал уже сегодня.

🔗 Успей записаться — и начни карьеру в Data Science уже через 3 месяца!
Есть ли в Python сборщик мусора, и, если есть, как он работает?

Стандартный интерпретатор использует несколько алгоритмов.

🧹 Подсчёт ссылок. Каждый объект в Python содержит внутренний счётчик ссылок. Когда он падает до нуля, это означает, что на объект больше нет ссылок, его можно удалить. Главный недостаток этого алгоритма — не умеет определять циклические ссылки.
🧹 Алгоритм поиска циклов. Реализован в модуле gc и активируется время от времени, а не постоянно. Если коротко, этот алгоритм периодически ищет объекты, которые ссылаются только друг на друга и не доступны извне. Объекты, признанные недостижимыми, удаляются.
Также стоит добавить, что циклический сборщик мусора делит объекты на три поколения в зависимости от того, как долго они существуют в памяти. Новые объекты помещаются в первое поколение. Если они сохраняются после очередного процесса сбора мусора, то перемещаются в следующее по старшинству поколение. Объекты в более старших поколениях проверяются реже.

Библиотека задач по Python
👍1