❗Вакансии «Библиотеки программиста» — ждем вас в команде!
Мы постоянно растем и развиваемся, поэтому создали отдельную страницу, на которой будут размещены наши актуальные вакансии. Сейчас мы ищем:
👉контент-менеджеров для ведения телеграм-каналов
Подробности тут
Мы предлагаем частичную занятость и полностью удаленный формат работы — можно совмещать с основной и находиться в любом месте🌴
Ждем ваших откликов 👾
Мы постоянно растем и развиваемся, поэтому создали отдельную страницу, на которой будут размещены наши актуальные вакансии. Сейчас мы ищем:
👉контент-менеджеров для ведения телеграм-каналов
Подробности тут
Мы предлагаем частичную занятость и полностью удаленный формат работы — можно совмещать с основной и находиться в любом месте🌴
Ждем ваших откликов 👾
job.proglib.io
Вакансии в медиа «Библиотека программиста»
Количество проектов в редакции постоянно растет, так что нам всегда нужны специалисты
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
🐳 Делаем конкурента DeepSeek R1-Zero на домашней пекарне: метод GRPO в Unsloth
Обычно LLM требуют мощных GPU, но теперь даже на видеокарте с ограниченной памятью можно обучать модели логического рассуждения.
💡 Фишка — новый алгоритм GRPO, который позволяет моделям развивать логическое мышление без вмешательства человека.
Подробнее в нашей статье: https://proglib.io/sh/MyBCbq9is5
Обычно LLM требуют мощных GPU, но теперь даже на видеокарте с ограниченной памятью можно обучать модели логического рассуждения.
💡 Фишка — новый алгоритм GRPO, который позволяет моделям развивать логическое мышление без вмешательства человека.
Подробнее в нашей статье: https://proglib.io/sh/MyBCbq9is5
🐍 Что такое сцепление исключений?
Сцепление исключений представляет собой метод, который позволяет сохранить первоначальную причину ошибки при её дополнительной обработке.
Когда возникает исключение, его можно перехватить с помощью блока
Это предоставляет следующие преимущества:
— При обработке нового исключения сохраняется доступ к стеку вызовов и данным первоначального исключения.
— Можно добавить дополнительную информацию в новое исключение, не теряя оригинальных данных.
— Сохраняется иерархия исключений, что позволяет видеть полную цепочку возникновения ошибки.
Сцепление исключений представляет собой метод, который позволяет сохранить первоначальную причину ошибки при её дополнительной обработке.
Когда возникает исключение, его можно перехватить с помощью блока
try/except
и затем вызвать другое исключение в процессе обработки. При этом первоначальное исключение сохраняется как причина для нового.Это предоставляет следующие преимущества:
— При обработке нового исключения сохраняется доступ к стеку вызовов и данным первоначального исключения.
— Можно добавить дополнительную информацию в новое исключение, не теряя оригинальных данных.
— Сохраняется иерархия исключений, что позволяет видеть полную цепочку возникновения ошибки.
Проверьте свои знания, ответив на 8 вопросов – https://proglib.io/w/54f1f2f6
🧐 Кому подойдет?
Разработчикам, которые знают любой объектно-ориентированный язык программирования и хотят углубиться в архитектурные паттерны.
🎮 Как проходит обучение?
В течение всего интенсива вы будете создавать игру «Звездные войны» и применять ключевые архитектурные паттерны. В процессе изучите:
– Как строить гибкую архитектуру, которая не замедляет разработку
– Как применять IoC-контейнеры и писать модульные тесты
– Как использовать SOLID за пределами ООП
– Как внедрять CI/CD и снижать технический долг
👉 Подробная программа обучения
А по промокоду
Please open Telegram to view this post
VIEW IN TELEGRAM
Что такое MQ?
MQ (Message Queue) — очередь сообщений, это паттерн asynchronous messaging, который позволяет обмениваться сообщениями между распределенными компонентами приложения.
Основные преимущества использования MQ:
Асинхронность — отправитель и получатель не зависят друг от друга.
Отказоустойчивость — сообщения не теряются при сбоях.
Масштабируемость — легко добавлять новых производителей и потребителей.
Сглаживание пиковой нагрузки — очередь позволяет буферизовать сообщения.
MQ широко используется для интеграции распределенных систем, построения микросервисных архитектур.
Популярные реализации MQ: RabbitMQ, Kafka, ActiveMQ.
MQ (Message Queue) — очередь сообщений, это паттерн asynchronous messaging, который позволяет обмениваться сообщениями между распределенными компонентами приложения.
Основные преимущества использования MQ:
Асинхронность — отправитель и получатель не зависят друг от друга.
Отказоустойчивость — сообщения не теряются при сбоях.
Масштабируемость — легко добавлять новых производителей и потребителей.
Сглаживание пиковой нагрузки — очередь позволяет буферизовать сообщения.
MQ широко используется для интеграции распределенных систем, построения микросервисных архитектур.
Популярные реализации MQ: RabbitMQ, Kafka, ActiveMQ.
Forwarded from Proglib.academy | IT-курсы
Big Data и Data Science применяются не только в IT-гигантах, но и в некоммерческом секторе, где технологии анализа данных помогают оптимизировать работу организаций, собирать средства и оказывать помощь эффективнее.
▪️ Как некоммерческие организации используют Data Science.
▪️ Оптимизация фондов и финансирования с помощью аналитики.
▪️ Роль прогнозных моделей в благотворительности.
▪️ Кейсы Amnesty International, Khan Academy и DataKind.
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Библиотека питониста | Python, Django, Flask
AI-интервью, которое тебя не завалит ❌
🔹 Никаких каверзных вопросов
🔹 Никакой оценки "на глаз"
🔹 Только объективная обратная связь
Как попробовать?
1️⃣ Зарегистрируйся на платформе
2️⃣ Авторизуйся через Телеграм
3️⃣ Пройди AI-интервью
💡 AI-рекрутер анализирует твои ответы и сразу даёт тебе разбор:
✔️ Что ты сделал хорошо
✔️ Где можно подтянуть навыки
А еще порекомендует вакансию от СБера по твоему профилю
📌 Пройди AI-интервью за 15 минут и получи разбор своих ответов сразу!
🔗 Попробуй прямо сейчас! 👉 https://clc.to/GkOTTA
Реклама. ПАО СБЕРБАНК, ИНН 7707083893. Erid 2VtzqxJV1cA
🔹 Никаких каверзных вопросов
🔹 Никакой оценки "на глаз"
🔹 Только объективная обратная связь
Как попробовать?
1️⃣ Зарегистрируйся на платформе
2️⃣ Авторизуйся через Телеграм
3️⃣ Пройди AI-интервью
💡 AI-рекрутер анализирует твои ответы и сразу даёт тебе разбор:
✔️ Что ты сделал хорошо
✔️ Где можно подтянуть навыки
А еще порекомендует вакансию от СБера по твоему профилю
📌 Пройди AI-интервью за 15 минут и получи разбор своих ответов сразу!
🔗 Попробуй прямо сейчас! 👉 https://clc.to/GkOTTA
Реклама. ПАО СБЕРБАНК, ИНН 7707083893. Erid 2VtzqxJV1cA
📊 Как себя чувствует IT-рынок в 2025 году?
Друзья, запускаем важное исследование рынка труда в IT!
Нам очень важно понять:
• Как изменились зарплаты
• Что происходит с наймом
• Есть ли сокращения или рост
🔐 Опрос полностью анонимный
⏱️ Займёт всего 3-5 минут
📈 Результаты опубликуем в подробной статье
Ваши ответы помогут составить реальную картину происходящего в индустрии.
👉 Пройти опрос
Друзья, запускаем важное исследование рынка труда в IT!
Нам очень важно понять:
• Как изменились зарплаты
• Что происходит с наймом
• Есть ли сокращения или рост
🔐 Опрос полностью анонимный
⏱️ Займёт всего 3-5 минут
📈 Результаты опубликуем в подробной статье
Ваши ответы помогут составить реальную картину происходящего в индустрии.
👉 Пройти опрос
Совет на 2025-й — будьте осторожнее с выбором работы.
IT-рынок штормит: массовые сокращения, заморозка найма, снижение зарплат. В такое время особенно важно отличать стоящие офферы от проходных.
Знакомо? Открываешь вакансию, а там: «Ищем middle-разработчика с опытом 10 лет, знанием 15 языков и готовностью работать за печеньки. Офис в Челябинске, релокация за ваш счет» 🤦♂️
Чтобы не тратить время на сотни сомнительных предложений, подпишитесь на IT Job Hub. Там мы отфильтровываем весь мусор и публикуем только избранные вакансии в стабильных компаниях:
— Зарплаты на уровне рынка, а не на уровне голодного студента
— Никаких «мы молодая и дружная семья» — только адекватные условия
— Проверенные работодатели, а не стартапы из сомнительных сфер
Вакансии удобно разбиты по тегам: #python #java #go #data #devops и по другим направлениям. Без воды и лишнего спама — только проверенные вакансии в знакомых компаниях.
Подписывайтесь, если не хотите упустить работу мечты → @proglib_jobs
IT-рынок штормит: массовые сокращения, заморозка найма, снижение зарплат. В такое время особенно важно отличать стоящие офферы от проходных.
Знакомо? Открываешь вакансию, а там: «Ищем middle-разработчика с опытом 10 лет, знанием 15 языков и готовностью работать за печеньки. Офис в Челябинске, релокация за ваш счет» 🤦♂️
Чтобы не тратить время на сотни сомнительных предложений, подпишитесь на IT Job Hub. Там мы отфильтровываем весь мусор и публикуем только избранные вакансии в стабильных компаниях:
— Зарплаты на уровне рынка, а не на уровне голодного студента
— Никаких «мы молодая и дружная семья» — только адекватные условия
— Проверенные работодатели, а не стартапы из сомнительных сфер
Вакансии удобно разбиты по тегам: #python #java #go #data #devops и по другим направлениям. Без воды и лишнего спама — только проверенные вакансии в знакомых компаниях.
Подписывайтесь, если не хотите упустить работу мечты → @proglib_jobs
Что выведет код?
Anonymous Quiz
27%
['python'] True
20%
['python'] False
43%
['PYTHON'] True
10%
['python'] False
🤖 Как в Python работают функции с переменным количеством аргументов (*args и **kwargs), и как это можно использовать для создания гибких функций?
Функции с *args принимают произвольное количество позиционных аргументов, а с **kwargs — именованных аргументов. Это позволяет передавать любое количество значений и делать интерфейс функций более гибким. *args упаковывает аргументы в кортеж, а **kwargs — в словарь.
Пример использования ⚙️
Функции с *args принимают произвольное количество позиционных аргументов, а с **kwargs — именованных аргументов. Это позволяет передавать любое количество значений и делать интерфейс функций более гибким. *args упаковывает аргументы в кортеж, а **kwargs — в словарь.
Пример использования ⚙️
def demo_func(*args, **kwargs):
print(«Позиционные аргументы:», args)
print(«Именованные аргументы:», kwargs)
demo_func(1, 2, 3, name="Alice», age=25)
# Позиционные аргументы: (1, 2, 3)
# Именованные аргументы: {'name': 'Alice', 'age': 25}
Forwarded from Proglib.academy | IT-курсы
Мы разберем, почему компании, которые массово увольняют разработчиков в пользу ИИ, рискуют остаться у разбитого корыта. Сгенерированный код не умеет исправлять баги, а инженеры, которые действительно понимают систему, становятся редкостью и роскошью.
▪️ Почему новые поколения программистов рискуют потерять ключевые навыки.
▪️ Как компании, заменившие инженеров ИИ, столкнутся с серьезными проблемами.
▪️ Почему опытные разработчики станут супердорогими и востребованными.
▪️ К чему приведет полная ставка на искусственный интеллект в IT.
🔗 Читайте статью
Please open Telegram to view this post
VIEW IN TELEGRAM
🤔 Основы математики в Machine Learning / Deep Learning
🗓 6 марта приглашаем вас на прямой эфир, где мы подробно разберем ряд Тейлора, собственные векторы и другие ключевые понятия в ML.
(ссылка)
🌟 Спикер: *Мария Горденко* – Старший преподаватель ФКН НИУ ВШЭ, НИТУ МИСИС, аспирант департамента анализа данных и искусственного интеллекта ФКН НИУ ВШЭ, а также преподаватель на курсе Алгоритмы и структуры данных в proglib academy.
Место работы: Инженер-программист, ведущий эксперт НИУ ВШЭ, цифровой ассистент и цифровой консультант НИУ ВШЭ.
😮 На вебинаре вы узнаете:
🔵 Теорию вероятностей: обсудим случайные величины, вероятность, математическое ожидание и дисперсию.
🔵 Линейную алгебру: изучим векторы, матрицы, собственные векторы и собственные значения.
🔵 Математический анализ: разберем производные и разложение функций в ряд Тейлора.
🔵 Практику: применим полученные знания на реальных кейсах из области Machine Learning и Deep Learning.
🎯 Почему это важно?
Понимание математических основ помогает глубже разобраться в работающих под капотом алгоритмах ML/DL и эффективно применять их на практике.
👉 Присоединяйтесь к нам и совершенствуйте свои навыки в машинном обучении!
📌 Регистрация по ссылке: https://proglib.io/w/4eed6544
🗓 6 марта приглашаем вас на прямой эфир, где мы подробно разберем ряд Тейлора, собственные векторы и другие ключевые понятия в ML.
(ссылка)
🌟 Спикер: *Мария Горденко* – Старший преподаватель ФКН НИУ ВШЭ, НИТУ МИСИС, аспирант департамента анализа данных и искусственного интеллекта ФКН НИУ ВШЭ, а также преподаватель на курсе Алгоритмы и структуры данных в proglib academy.
Место работы: Инженер-программист, ведущий эксперт НИУ ВШЭ, цифровой ассистент и цифровой консультант НИУ ВШЭ.
😮 На вебинаре вы узнаете:
🔵 Теорию вероятностей: обсудим случайные величины, вероятность, математическое ожидание и дисперсию.
🔵 Линейную алгебру: изучим векторы, матрицы, собственные векторы и собственные значения.
🔵 Математический анализ: разберем производные и разложение функций в ряд Тейлора.
🔵 Практику: применим полученные знания на реальных кейсах из области Machine Learning и Deep Learning.
🎯 Почему это важно?
Понимание математических основ помогает глубже разобраться в работающих под капотом алгоритмах ML/DL и эффективно применять их на практике.
👉 Присоединяйтесь к нам и совершенствуйте свои навыки в машинном обучении!
📌 Регистрация по ссылке: https://proglib.io/w/4eed6544
Forwarded from Библиотека питониста | Python, Django, Flask
💾 10 способов работы с большими файлами в Python, о которых ты не знал
Годнота для всех, кто работает с данными. Статья раскрывает разные подходы к обработке больших файлов — от простых итераторов до распределенных вычислений.
👍 Сохраняй себе, точно пригодится в работе: https://proglib.io/sh/VOcgo7w0W1
Годнота для всех, кто работает с данными. Статья раскрывает разные подходы к обработке больших файлов — от простых итераторов до распределенных вычислений.
👍 Сохраняй себе, точно пригодится в работе: https://proglib.io/sh/VOcgo7w0W1