Библиотека задач по Python | тесты, код, задания
6.83K subscribers
681 photos
8 videos
258 links
Задачи и тесты по Python для тренировки и обучения.

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/9f7384d6

Работать у нас: https://job.proglib.io/

Наши каналы: https://yangx.top/proglibrary/9197
加入频道
Что выведет код?

👾 — [[4, 5], [1, 2, 3], [6, 7, 8, 9]]
👍 — [[6, 7, 8, 9], [1, 2, 3], [4, 5]]
🥰 — [2, 3, 4]
⚡️ — [3, 5, 9]

Библиотека задач по Python
Media is too big
VIEW IN TELEGRAM
🙂 Раскрываем секрет собственных векторов: математическое оружие на собеседовании

Что объединяет успешный собес и продвинутый анализ данных? Оба требуют способности выделять главное из информационного шума!

В мире данных этот суперскилл называется методом главных компонент (PCA) — это как рентген для ваших данных, который мгновенно показывает всю суть, отбрасывая неважные детали.

Например, мы проанализировали 453 акции компаний из списка S&P 500 и выяснили, что всего одна главная компонента объясняет 38% всей динамики рынка. Как такое возможно?

😘 Расскажем на воркшопе «Математика машинного обучения на практике» 21 апреля!

Вы будете работать с реальными данными, научитесь выявлять скрытые закономерности и применять эти инсайты в своих проектах.

Стоимость: 3990 ₽

Не беспокойтесь, если теоретическая база пока хромает — вы можете заранее посмотреть запись нашего вебинара по основам по ссылке ниже.

➡️ Забронировать место на воркшопе: https://proglib.io/w/41d8fd54
Please open Telegram to view this post
VIEW IN TELEGRAM
От многомерности к сути: чему нас учит PCA

На собеседовании важно уметь выделить главное — свои сильные стороны, мышление и ценности. Это помогает справляться со стрессом, неожиданными вопросами и субъективной оценкой.

В машинном обучении есть похожий подход — PCA (метод главных компонент). Он сокращает размерность данных, устраняя шум и второстепенные детали, и помогает сфокусироваться на самом важном.

В новой статье мы разберём:
• Как работает PCA
• Зачем он нужен
• Как применять его на практике — например, для анализа доходностей акций S&P 500

🐸 Подробнее: https://proglib.io/sh/uXsDlt75MY

Библиотека питониста
Please open Telegram to view this post
VIEW IN TELEGRAM