Please open Telegram to view this post
VIEW IN TELEGRAM
Что такое замыкание?
Замыкание (closure) — это функция, которая запоминает значения переменных из области видимости, в которой она была создана, и может получить к ним доступ, даже если она будет вызвана за пределами этой области видимости.
Ключевым моментом является то, что замыкание запоминает ссылки на переменные, а не сами значения. Это позволяет обращаться к актуальным значениям переменных даже после того, как функция, создавшая замыкание, завершила работу.
Обычно замыкания используются, если нужно:
— Создать функцию с сохранением некоторого состояния между вызовами.
— Избежать использования глобальных переменных и повысить инкапсуляцию.
— Частично применить функцию без вызова (создание другой функции).
В Python замыкания реализуются элегантно и просто с помощью вложенных функций. Это мощный механизм, позволяющий писать короткий и чистый код.
Библиотека задач по Python
Ключевым моментом является то, что замыкание запоминает ссылки на переменные, а не сами значения. Это позволяет обращаться к актуальным значениям переменных даже после того, как функция, создавшая замыкание, завершила работу.
Обычно замыкания используются, если нужно:
— Создать функцию с сохранением некоторого состояния между вызовами.
— Избежать использования глобальных переменных и повысить инкапсуляцию.
— Частично применить функцию без вызова (создание другой функции).
В Python замыкания реализуются элегантно и просто с помощью вложенных функций. Это мощный механизм, позволяющий писать короткий и чистый код.
Библиотека задач по Python
Как перезагрузить импортированный модуль?
Чтобы перезагрузить импортированный модуль в Python, вы можете использовать функцию reload() из модуля importlib.
Замените module_name на фактическое имя модуля, который вы хотите перезагрузить.
Это может быть полезно при разработке и тестировании модулей, но не рекомендуется использовать в производственном коде без серьезных причин.
Библиотека задач по Python
Замените module_name на фактическое имя модуля, который вы хотите перезагрузить.
Это может быть полезно при разработке и тестировании модулей, но не рекомендуется использовать в производственном коде без серьезных причин.
Библиотека задач по Python
🤯 Мы больше года строим мультиагентные системы
Грабли, находки, паттерны, эксперименты — всё это накопилось и в какой-то момент стало жалко держать только у себя.
Никита — рассказывает (и показывает) базу: токенизация, LLM, SFT, PEFT, локальный инференс + RAG и как оценивать его качество.
Диана — как строят мультиагентные системы, какие есть паттерны проектирования и библиотеки.
Макс — про инференс в проде + разберет CoPilot, соберет с вами из кусочков свой копайлот, а затем его сломает через prompt injection. // Макс фанат autogen (а если нет — он вас разубедит в своем классном канале)
Финальным аккордом Дима углубится в MCP и соберет несколько кейсов повзрослее.
Курс тут: https://clc.to/47pgYA
Промокод:datarascals действует до 23:59 29 июня
Грабли, находки, паттерны, эксперименты — всё это накопилось и в какой-то момент стало жалко держать только у себя.
Никита — рассказывает (и показывает) базу: токенизация, LLM, SFT, PEFT, локальный инференс + RAG и как оценивать его качество.
Диана — как строят мультиагентные системы, какие есть паттерны проектирования и библиотеки.
Макс — про инференс в проде + разберет CoPilot, соберет с вами из кусочков свой копайлот, а затем его сломает через prompt injection. // Макс фанат autogen (а если нет — он вас разубедит в своем классном канале)
Финальным аккордом Дима углубится в MCP и соберет несколько кейсов повзрослее.
Курс тут: https://clc.to/47pgYA
Промокод:
Что такое промежуточное ПО в Django?
👾 — Компонент фреймворка для обработки запросов и ответов
👍 — Соединитель базы данных
🥰 — Механизм рендеринга шаблонов
⚡️ — Библиотека стилей внешнего интерфейса
Библиотека задач по Python
👾 — Компонент фреймворка для обработки запросов и ответов
👍 — Соединитель базы данных
🥰 — Механизм рендеринга шаблонов
⚡️ — Библиотека стилей внешнего интерфейса
Библиотека задач по Python
Какой движок базы данных используется для PostgreSQL в Django?
👾 — django.db.backends.postgresql
👍 — django.db.backends.mysql
🥰 —
⚡️ — django.db.backends.sqlite3
Библиотека задач по Python
👾 — django.db.backends.postgresql
👍 — django.db.backends.mysql
🥰 —
django.db.backends.oracle
⚡️ — django.db.backends.sqlite3
Библиотека задач по Python
Чем полезна библиотека Manim?
Библиотека Manim (Mathematical Animation Engine) предоставляет инструменты для создания анимаций математических концепций с использованием Python. Эта библиотека широко используется в образовательных целях и в сообществе, занимающемся созданием математического контента. Manim была изначально разработана Грантом Сандерсоном, создателем 3Blue1Brown, для создания анимаций для его образовательных видеороликов.
Помимо этого, существует две версии Manim: Manim Community Edition (ManimCE) и Manim GL. ManimCE является развитием и поддерживается сообществом. Manim GL, с другой стороны, предоставляет улучшенные возможности OpenGL для более высокого качества анимаций.
После установки вы можете использовать команды вроде , чтобы создать видео на основе вашего скрипта.
Библиотека задач по Python
Помимо этого, существует две версии Manim: Manim Community Edition (ManimCE) и Manim GL. ManimCE является развитием и поддерживается сообществом. Manim GL, с другой стороны, предоставляет улучшенные возможности OpenGL для более высокого качества анимаций.
После установки вы можете использовать команды вроде
manim your_script.py YourSceneName -p -ql
Библиотека задач по Python
🔥 Последняя неделя перед стартом курса по AI-агентам
Старт курса уже 5го числа! Если вы планировали вписаться — сейчас ПОСЛЕДНИЙ шанс забронировать место
На курсе:
— разложим LLM по косточкам: токенизация, SFT, PEFT, инференс
— соберём RAG и научимся оценивать его адекватно
— построим настоящую мультиагентную систему — архитектуру, которая умеет расти
— разберём CoPilot, сломаем через prompt injection (спасибо Максу)
— и наконец, посмотрим, как это работает в MCP и реальных кейсах
📍 Это 5 живых вебинаров + раздатка + домашки + чат с преподавателями
И главное — возможность реально разобраться, как проектировать системы на LLM, а не просто «поиграться с API»
👉 Курс здесь
Старт курса уже 5го числа! Если вы планировали вписаться — сейчас ПОСЛЕДНИЙ шанс забронировать место
На курсе:
— разложим LLM по косточкам: токенизация, SFT, PEFT, инференс
— соберём RAG и научимся оценивать его адекватно
— построим настоящую мультиагентную систему — архитектуру, которая умеет расти
— разберём CoPilot, сломаем через prompt injection (спасибо Максу)
— и наконец, посмотрим, как это работает в MCP и реальных кейсах
📍 Это 5 живых вебинаров + раздатка + домашки + чат с преподавателями
И главное — возможность реально разобраться, как проектировать системы на LLM, а не просто «поиграться с API»
👉 Курс здесь
Что выведет код?
👾 — [7, 19, 45, 89]
👍 — [2, 4, 22, 72]
🥰 — [4, 7, 19, 2, 89, 45, 72, 22]
⚡️ — [2, 4, 7, 19, 22, 45, 72, 89]
Библиотека задач по Python
👾 — [7, 19, 45, 89]
👍 — [2, 4, 22, 72]
🥰 — [4, 7, 19, 2, 89, 45, 72, 22]
⚡️ — [2, 4, 7, 19, 22, 45, 72, 89]
Библиотека задач по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 «Поиграйся с LLM, почитай про агентов — и сам поймёшь, как это работает»
Это один из самых бесполезных советов, который мы слышали в адрес тех, кто хочет разобраться в AI-агентах.
Поиграйся — это как?
Потыкать пару промптов в ChatGPT и решить, что теперь ты можешь строить мультиагентные системы? 🤡 Ну-ну.
AI-агенты — это не «очередная обёртка над GPT». Это архитектура. Состояния, инструменты, цепочки вызовов, память, оценка качества и адекватность поведения.
➡️ Чтобы разобраться, нужно:
— понимать, как устроен LLM под капотом
— уметь подключать внешние данные (RAG, retrievers, rerankers)
— уметь масштабировать и дебажить поведение агентов
— разбираться в фреймворках вроде AutoGen, CrewAI, LangChain
— знать, как всё это тащится в прод
Если вы реально хотите не «поиграться», а научиться собирать рабочие агентные системы — у нас стартует курс по разработке ИИ-агентов 5го июля
P.S: не упусти свой шанс, промокод:LASTCALL на 10.000₽
Это один из самых бесполезных советов, который мы слышали в адрес тех, кто хочет разобраться в AI-агентах.
Поиграйся — это как?
Потыкать пару промптов в ChatGPT и решить, что теперь ты можешь строить мультиагентные системы? 🤡 Ну-ну.
AI-агенты — это не «очередная обёртка над GPT». Это архитектура. Состояния, инструменты, цепочки вызовов, память, оценка качества и адекватность поведения.
➡️ Чтобы разобраться, нужно:
— понимать, как устроен LLM под капотом
— уметь подключать внешние данные (RAG, retrievers, rerankers)
— уметь масштабировать и дебажить поведение агентов
— разбираться в фреймворках вроде AutoGen, CrewAI, LangChain
— знать, как всё это тащится в прод
Если вы реально хотите не «поиграться», а научиться собирать рабочие агентные системы — у нас стартует курс по разработке ИИ-агентов 5го июля
P.S: не упусти свой шанс, промокод: