Есть ли в Python сборщик мусора, и, если есть, как он работает?
Стандартный интерпретатор использует несколько алгоритмов.
🧹 Подсчёт ссылок. Каждый объект в Python содержит внутренний счётчик ссылок. Когда он падает до нуля, это означает, что на объект больше нет ссылок, его можно удалить. Главный недостаток этого алгоритма — не умеет определять циклические ссылки.
🧹 Алгоритм поиска циклов. Реализован в модуле gc и активируется время от времени, а не постоянно. Если коротко, этот алгоритм периодически ищет объекты, которые ссылаются только друг на друга и не доступны извне. Объекты, признанные недостижимыми, удаляются.
Также стоит добавить, что циклический сборщик мусора делит объекты на три поколения в зависимости от того, как долго они существуют в памяти. Новые объекты помещаются в первое поколение. Если они сохраняются после очередного процесса сбора мусора, то перемещаются в следующее по старшинству поколение. Объекты в более старших поколениях проверяются реже.
Библиотека собеса по Python
Библиотека собеса по Python
Как найти корреляцию с помощью Pandas?
Метод Pandas dataframe.corr() используется для поиска корреляции всех столбцов dataframe. Он автоматически игнорирует любые отсутствующие или нечисловые значения.
DataFrame.corr()
Библиотека собеса по Python
Библиотека собеса по Python
⏰ Последние 2 дня скидки на курс «AI-агенты для DS-специалистов»
Пока большинство дата-сайентистов строят модели и делают аналитику, рынок уже требует специалистов, которые создают автономные системы на базе ИИ-агентов.
Для этого мы подготовили специальный курс и собрали кучу дополнительного контента, который поможет погрузиться в тему еще глубже. Но чтобы получить все плюшки, успевайте до 1 июня.
🎁 Что вы получите при оплате курса до 1 июня:
— Промокод PROGLIBAIна 10 000 ₽ на курс, чтобы изучать AI-агентов еще выгоднее
— Эксклюзивный лонгрид по API и ML от Proglib
💡Что разберем на курсе «AI-агенты для DS-специалистов»:
— Реализацию памяти в цепочках langchain
— Полный пайплайн RAG-системы с оценкой качества
— Основы мультиагентных систем (MAS)
— Протокол MCP и фреймворк FastMCP
Промокод также действует на курсы «Математика для Data Science» и «Алгоритмы и структуры данных».
👉 Успейте до 1 июня: https://clc.to/Cttu7A
Пока большинство дата-сайентистов строят модели и делают аналитику, рынок уже требует специалистов, которые создают автономные системы на базе ИИ-агентов.
Для этого мы подготовили специальный курс и собрали кучу дополнительного контента, который поможет погрузиться в тему еще глубже. Но чтобы получить все плюшки, успевайте до 1 июня.
🎁 Что вы получите при оплате курса до 1 июня:
— Промокод PROGLIBAIна 10 000 ₽ на курс, чтобы изучать AI-агентов еще выгоднее
— Эксклюзивный лонгрид по API и ML от Proglib
💡Что разберем на курсе «AI-агенты для DS-специалистов»:
— Реализацию памяти в цепочках langchain
— Полный пайплайн RAG-системы с оценкой качества
— Основы мультиагентных систем (MAS)
— Протокол MCP и фреймворк FastMCP
Промокод также действует на курсы «Математика для Data Science» и «Алгоритмы и структуры данных».
👉 Успейте до 1 июня: https://clc.to/Cttu7A
Почему NumPy предпочтительнее Matlab, Octave, Idl или Yorick?
NumPy — высокопроизводительная библиотека с открытым исходным кодом, которая обеспечивает сложные математические и научные вычислительные возможности. Она поддерживает следующее:
⚡️Мощные функции для выполнения сложных математических операций с многомерными матрицами и массивами. Операции с ndarrays NumPy примерно на 50% быстрее по сравнению с операциями с встроенными списками с использованием циклов. Эта эффективность очень полезна, когда массивы содержат миллионы элементов
⚡️Предоставляет синтаксис индексации для легкого доступа к частям данных в большом массиве
⚡️Предоставляет встроенные функции, которые помогают легко выполнять операции, связанные с линейной алгеброй и статистикой
⚡️Для выполнения сложных вычислений с использованием NumPy требуется всего несколько строк кода
Библиотека собеса по Python
⚡️Мощные функции для выполнения сложных математических операций с многомерными матрицами и массивами. Операции с ndarrays NumPy примерно на 50% быстрее по сравнению с операциями с встроенными списками с использованием циклов. Эта эффективность очень полезна, когда массивы содержат миллионы элементов
⚡️Предоставляет синтаксис индексации для легкого доступа к частям данных в большом массиве
⚡️Предоставляет встроенные функции, которые помогают легко выполнять операции, связанные с линейной алгеброй и статистикой
⚡️Для выполнения сложных вычислений с использованием NumPy требуется всего несколько строк кода
Библиотека собеса по Python
🚨 Что на самом деле происходит с увольнениями в ИТ
Каждый день в чатах разработчиков появляются сообщения «ищу работу», «команду сократили», «проект закрыли». Но никто не говорит о причинах и масштабах катастрофы. Мы запустили большое исследование, чтобы раскрыть правду!
🎯 Что мы выясним:
→ Реальные причины увольнений
→ Сколько времени нужно на поиск работы
→ Самые безумные истории смены работы
Понимая реальную ситуацию, мы сможем принимать взвешенные решения о карьере и не попасться на удочку HR-сказок.
👉 Пройдите опрос за 3 минуты и помогите всему сообществу: https://clc.to/yJ5krg
Каждый день в чатах разработчиков появляются сообщения «ищу работу», «команду сократили», «проект закрыли». Но никто не говорит о причинах и масштабах катастрофы. Мы запустили большое исследование, чтобы раскрыть правду!
🎯 Что мы выясним:
→ Реальные причины увольнений
→ Сколько времени нужно на поиск работы
→ Самые безумные истории смены работы
Понимая реальную ситуацию, мы сможем принимать взвешенные решения о карьере и не попасться на удочку HR-сказок.
👉 Пройдите опрос за 3 минуты и помогите всему сообществу: https://clc.to/yJ5krg
Для чего нужна функция statistics.mean()?
Функция statistics.mean() в Python используется для вычисления среднего арифметического набора данных. Она находится в модуле statistics, который нужно предварительно импортировать.
Библиотека собеса по Python
Библиотека собеса по Python
Как векторизация связана с бродкастингом в NumPy?
Векторизация подразумевает делегирование операций NumPy внутренне оптимизированным функциям языка C для получения более быстрого кода Python. В то время как бродкастинг относится к методам, которые позволяют NumPy выполнять арифметические операции, связанные с массивами. Размер или форма массивов в этом случае не имеют значения. Трансляция решает проблему несовпадающих массивов, реплицируя меньший массив вдоль большего массива, чтобы гарантировать, что оба массива имеют совместимые формы для операций NumPy. Выполнение бродкастинга перед векторизацией помогает векторизовать операции, которые поддерживают массивы разных измерений.
Библиотека собеса по Python
Библиотека собеса по Python
Как объединить два списка в список кортежей?
Для объединения в список кортежей можно использовать функцию zip, причем не только двух, но трех и более списков.
Библиотека собеса по Python
Библиотека собеса по Python
Что такое shallow copy и как используется?
Shallow copy — это создание нового объекта путем копирования ссылки на вложенный объект, вместо создания полной копии вложенного объекта.
Если мы копируем список, который содержит другие списки, при shallow copy будут скопированы только внешние списки.
Если изменить внутренний список в копии, то это отразится и на оригинале.
Основное отличие от deep copy в том, что при полном копировании создаются копии всех вложенных объектов до самого нижнего уровня.
Библиотека собеса по Python
Если мы копируем список, который содержит другие списки, при shallow copy будут скопированы только внешние списки.
Если изменить внутренний список в копии, то это отразится и на оригинале.
Основное отличие от deep copy в том, что при полном копировании создаются копии всех вложенных объектов до самого нижнего уровня.
Библиотека собеса по Python
Please open Telegram to view this post
VIEW IN TELEGRAM
🫣 Устали от HR-сказок про «дружный коллектив» и «печеньки в офисе»?
Давайте честно поговорим о том, что действительно происходит на IT-рынке. Не в розовых презентациях, а в реальной жизни разработчиков, тестировщиков, аналитиков и всех, кто живет кодом.
🧐 Мы проводим исследование, чтобы выяснить:
— Как часто мы прыгаем между компаниями (и почему)
— Какие красные флаги заставляют бежать без оглядки
— Где реально находят работу
— Что бесит в HR больше всего
— Сколько кругов собеседований — это уже перебор
Результаты покажут реальную картину рынка. Без приукрашиваний. Может, компании поймут, что нужно менять, а специалисты — куда двигаться дальше.
😈 Опрос займет 5 минут, но результаты будут работать на всех нас → https://clc.to/9aaXVg
Давайте честно поговорим о том, что действительно происходит на IT-рынке. Не в розовых презентациях, а в реальной жизни разработчиков, тестировщиков, аналитиков и всех, кто живет кодом.
🧐 Мы проводим исследование, чтобы выяснить:
— Как часто мы прыгаем между компаниями (и почему)
— Какие красные флаги заставляют бежать без оглядки
— Где реально находят работу
— Что бесит в HR больше всего
— Сколько кругов собеседований — это уже перебор
Результаты покажут реальную картину рынка. Без приукрашиваний. Может, компании поймут, что нужно менять, а специалисты — куда двигаться дальше.
😈 Опрос займет 5 минут, но результаты будут работать на всех нас → https://clc.to/9aaXVg
Какой метод используется для изменения формы массивов numpy?
Anonymous Quiz
21%
shape()
11%
change_shape()
14%
update_shape()
54%
reshape()
😵💫 Как правильно выбрать LLM для использования в агентских системах
Модели могут выдумывать факты, ссылаться на несуществующие источники и уверенно врать. Особенно часто это происходит при работе с редкими языками или специфическими тематиками.
Поэтому на первом занятии курса «AI-агенты для DS-специалистов» разберем, как с этим бороться. И это только первый из пяти уроков!
🔍 Выбор правильной модели
Не все LLM одинаково полезны. Обсудим квантизованные модели, instruct-версии и мультилингвальные решения. Узнаем, где больше галлюцинаций — в базовых моделях или после дообучения.
💰 Токенизация и стоимость
Разные языки «съедают» разное количество токенов. Покажем, как это влияет на цену API и почему русский текст может стоить дороже английского.
⚡️ Температура и Guardrails
Настройка temperature помогает контролировать креативность модели. А системы Guardrails — отсекать неподходящие ответы еще до генерации.
🧠 Память vs контекст
Казалось бы, зачем RAG, если есть модели с контекстом более 10М токенов? Но не все токены равнозначны. Разберем, когда внешние источники все еще нужны.
В конце создадим простых агентов на LangChain с подключением к внешним источникам и инструментам поиска — и у вас уже будет кейс по созданию собственного AI-агента.
👉 Присоединяйтесь к курсу — приятная цена действует до 14 июня!
Модели могут выдумывать факты, ссылаться на несуществующие источники и уверенно врать. Особенно часто это происходит при работе с редкими языками или специфическими тематиками.
Поэтому на первом занятии курса «AI-агенты для DS-специалистов» разберем, как с этим бороться. И это только первый из пяти уроков!
🔍 Выбор правильной модели
Не все LLM одинаково полезны. Обсудим квантизованные модели, instruct-версии и мультилингвальные решения. Узнаем, где больше галлюцинаций — в базовых моделях или после дообучения.
💰 Токенизация и стоимость
Разные языки «съедают» разное количество токенов. Покажем, как это влияет на цену API и почему русский текст может стоить дороже английского.
⚡️ Температура и Guardrails
Настройка temperature помогает контролировать креативность модели. А системы Guardrails — отсекать неподходящие ответы еще до генерации.
🧠 Память vs контекст
Казалось бы, зачем RAG, если есть модели с контекстом более 10М токенов? Но не все токены равнозначны. Разберем, когда внешние источники все еще нужны.
В конце создадим простых агентов на LangChain с подключением к внешним источникам и инструментам поиска — и у вас уже будет кейс по созданию собственного AI-агента.
👉 Присоединяйтесь к курсу — приятная цена действует до 14 июня!
Как проверить, является ли массив пустым в numpy (или массивом с нулевыми элементами)?
Мы можем проверить пустоту массива NumPy, используя атрибут size. Давайте рассмотрим пример ниже. У нас есть массив NumPy arr, заполненный нулями. Если элемент size возвращает ноль, это означает, что массив пуст или состоит только из нулей.
import numpy as np
arr = np.zeros((1,0)) #returns empty array
print(arr.size) #returns 0
Библиотека собеса по Python
import numpy as np
arr = np.zeros((1,0))
print(arr.size)
Библиотека собеса по Python
🥴 Средний разработчик меняет работу каждые 1,5 года
И это не потому, что мы такие непостоянные. Просто рынок показывает свое истинное лицо быстрее, чем успевают напечатать визитки.
Поэтому мы собираем инсайды от тех, кто находится в окопах digital-трансформации каждый день. От джуниоров, которые только въезжают в профессию, до сеньоров, повидавших всякого.
😳 О чем говорим откровенно:
— Job-hopping и что за этим стоит
— Red flags, которые мгновенно убивают мотивацию
— Реальные источники вакансий (не те, что рекламируют)
— Боль от общения с рекрутерами
— Сколько этапов отбора — норма, а сколько — издевательство
Когда мы объединим опыт сотен IT-специалистов, получится настоящая карта того, как устроена индустрия. Не по версии HR-отделов, а по версии тех, кто пишет код, тестирует продукты и двигает технологии вперед.
🚀 Участвовать в исследовании → https://clc.to/9aaXVg
И это не потому, что мы такие непостоянные. Просто рынок показывает свое истинное лицо быстрее, чем успевают напечатать визитки.
Поэтому мы собираем инсайды от тех, кто находится в окопах digital-трансформации каждый день. От джуниоров, которые только въезжают в профессию, до сеньоров, повидавших всякого.
😳 О чем говорим откровенно:
— Job-hopping и что за этим стоит
— Red flags, которые мгновенно убивают мотивацию
— Реальные источники вакансий (не те, что рекламируют)
— Боль от общения с рекрутерами
— Сколько этапов отбора — норма, а сколько — издевательство
Когда мы объединим опыт сотен IT-специалистов, получится настоящая карта того, как устроена индустрия. Не по версии HR-отделов, а по версии тех, кто пишет код, тестирует продукты и двигает технологии вперед.
🚀 Участвовать в исследовании → https://clc.to/9aaXVg