Библиотека собеса по Python | вопросы с собеседований
6.15K subscribers
612 photos
10 videos
342 links
Вопросы с собеседований по Python и ответы на них.

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/6587aafa

Для обратной связи: @proglibrary_feeedback_bot
加入频道
Как сбросить индекс DataFrame?

Индекс датафреймов Pandas можно сбросить с помощью метода reset_index(). Его можно использовать для простого сброса индекса до целочисленного индекса по умолчанию, начиная с 0.

DataFrame.reset_index(inplace = True)


Библиотека собеса по Python
Как проверить файл .py на синтаксические ошибки, не запуская его?

Утилита py_compile, позволит проверить файл .py на наличие синтаксических ошибок без его запуска.

Вы можете использовать командную строку или терминал для проверки файла .py на наличие синтаксических ошибок, не запуская его, используя флаг -m с модулем py_compile.

Откройте командную строку или терминал. Перейдите в каталог, содержащий файл .py, который вы хотите проверить, где yourfile .py — это имя файла, который вы хотите проверить.


Библиотека собеса по Python
Расскажите про полезные константы пакета string

В Python есть несколько полезных констант в пакете string, которые нужно знать начинающему программисту:

— string.ascii_letters: строка со всеми буквами английского алфавита (строчными и прописными).
— string.digits: строка со всеми цифрами.
— string.hexdigits: строка со всеми шестнадцатеричными цифрами.
— string.octdigits: строка со всеми восьмеричными цифрами.
— string.punctuation: строка со всеми знаками пунктуации.
— string.whitespace: строка со всеми пробельными символами.

Эти константы позволяют легко получить строки с определенными наборами символов, что часто бывает полезно при работе со строками.


Библиотека собеса по Python
Что такое коллизия?

Коллизия — это ситуация, когда при добавлении элементов в хеш-таблицу или словарь, разные ключи отображаются в одну и ту же ячейку памяти.

Это происходит потому, что количество возможных ключей обычно больше, чем размер выделенной хеш-таблицы, и хеш-функция отображает ключи в ограниченное количество ячеек.
При коллизии несколько разных ключей могут иметь одинаковый хеш, что приводит к их конфликту при размещении в хеш-таблице.

Чтобы решить проблему коллизий, в Python используются разные стратегии, например:
— Цепочки: списки элементов внутри ячейки таблицы.
— Открытая адресация: подбор следующей свободной ячейки.
— Перехеширование: генерация нового хеша при коллизии.

Уменьшение коллизий позволяет повысить производительность операций с хеш-таблицами и словарями.


Библиотека собеса по Python
😳 Почему дата-сайентисты застревают на уровне «делаю отчеты и строю модельки»

Проблема большинства спецов: вы отлично знаете pandas, sklearn и даже можете настроить нейронку. Но когда дело доходит до создания автономных систем, которые принимают решения без человека — тупик.

При этом большинство курсов по ИИ либо для программистов (и там про API больше, чем про данные), либо академические (теория без практики).

🔥Поэтому мы запускаем курс «AI-агенты для DS-специалистов»

🧐 Что будет на курсе:
— Рассмотрим реализацию памяти в цепочках langchain и создадим пару простых агентов.
— Соберем полный пайплайн RAG-системы с оценкой качества.
— Изучим основные понятия мультиагентных систем (MAS) и библиотеки для их построения.
— Рассмотрим протокол MCP и фреймворк FastMCP, создадим end-to-end приложение.

🎁 В честь запуска курса мы дарим промокод PROGLIBAI на 10 000 ₽ на два других обучения:
Математика для Data Science
Алгоритмы и структуры данных

После этих курсов вы перестанете быть «тем, кто делает отчеты» и станете архитектором умных систем. А это совсем другой уровень зарплаты и востребованности.

👉 Успейте использовать промокод и забрать новый курс по приятной цене до 1 июня: https://clc.to/Cttu7A
Как выбрать отдельный столбец DataFrame?

Существует несколько способов выбора одного столбца из dataframe: Используя оператор «точка», мы можем получить доступ к любому столбцу фрейма данных.
Dataframe.column_name
Другой способ выбора столбца — использование квадратных скобок [].
DataFrame[column_name]


Библиотека собеса по Python
😱 Вся правда об увольнениях в IT в 2025-м

Пока все молчат о том, что происходит на рынке, мы решили выяснить реальную картину. Без прикрас и корпоративного пиара.

Но для этого нам нужна ваша помощь! Мы собираем данные от разработчиков, тестировщиков, менеджеров и всех, кто работает в ИТ, чтобы создать честное исследование о:

— реальных причинах массовых увольнений
— судьбе тех, кто остался за бортом IT-рынка
— том, сколько времени сейчас нужно на поиск работы

Почему это важно? Потому что сила в правде. Зная реальную ситуацию, вы сможете лучше понимать тренды рынка и планировать карьеру.

⚡️Пройдите опрос и помогите всему сообществу: https://clc.to/yJ5krg
Что такое dict comprehension?

Dict comprehension — это способ конструирования словарей в одну строку, аналогичный list comprehension.

Синтаксис dict comprehension: {ключ: значение for элемент in итерируемый_объект if условие}

Основные преимущества dict comprehension:
— Краткость и читабельность по сравнению с обычным циклом.
— Более высокая производительность за счет оптимизации.
— Удобство создания словарей «на лету» по данным.

Dict comprehension используется для:
— Преобразования данных из одного вида в другой.
— Создания словарей на основе списков или других итерируемых объектов.
— Фильтрации и обработки данных в процессе создания словаря.


Библиотека собеса по Python
👾 AI-агенты — настоящее, о котором все говорят

На днях мы анонсировали наш новый курс AI-агенты для DS-специалистов 🎉

Это продвинутая программа для тех, кто хочет получить прикладной опыт с LLM и решать сложные задачи!

На обучении вы соберете полноценные LLM-системы с учётом особенностей доменных областей, получите hands-on навыки RAG, Crew-AI / Autogen / LangGraph и агентов.

🎓 В рамках курса вы научитесь:
— адаптировать LLM под разные предметные области и данные
— собирать свою RAG-систему: от ретривера и реранкера до генератора и оценки качества
— строить AI-агентов с нуля — на основе сценариев, функций и взаимодействия с внешней средой

Разберете реальные кейсы и научитесь применять похожие подходы в разных доменных областях, получите фундамент для уверенного прохождения NLP system design интервью и перехода на следующий грейд.

Старт 5 июля, а при оплате до 1 июня действует дополнительная скидка и бонус — эксклюзивный лонгрид по API и ML от Proglib.

Начните осваивать тему уже сейчас 👉 https://clc.to/Cttu7A
Библиотека собеса по Python | вопросы с собеседований pinned «👾 AI-агенты — настоящее, о котором все говорят На днях мы анонсировали наш новый курс AI-агенты для DS-специалистов 🎉 Это продвинутая программа для тех, кто хочет получить прикладной опыт с LLM и решать сложные задачи! На обучении вы соберете полноценные…»
Есть ли в Python сборщик мусора, и, если есть, как он работает?

Стандартный интерпретатор использует несколько алгоритмов.

🧹 Подсчёт ссылок. Каждый объект в Python содержит внутренний счётчик ссылок. Когда он падает до нуля, это означает, что на объект больше нет ссылок, его можно удалить. Главный недостаток этого алгоритма — не умеет определять циклические ссылки.
🧹 Алгоритм поиска циклов. Реализован в модуле gc и активируется время от времени, а не постоянно. Если коротко, этот алгоритм периодически ищет объекты, которые ссылаются только друг на друга и не доступны извне. Объекты, признанные недостижимыми, удаляются.
Также стоит добавить, что циклический сборщик мусора делит объекты на три поколения в зависимости от того, как долго они существуют в памяти. Новые объекты помещаются в первое поколение. Если они сохраняются после очередного процесса сбора мусора, то перемещаются в следующее по старшинству поколение. Объекты в более старших поколениях проверяются реже.

Библиотека собеса по Python
Как найти корреляцию с помощью Pandas?

Метод Pandas dataframe.corr() используется для поиска корреляции всех столбцов dataframe. Он автоматически игнорирует любые отсутствующие или нечисловые значения.
DataFrame.corr()

Библиотека собеса по Python
Последние 2 дня скидки на курс «AI-агенты для DS-специалистов»

Пока большинство дата-сайентистов строят модели и делают аналитику, рынок уже требует специалистов, которые создают автономные системы на базе ИИ-агентов.

Для этого мы подготовили специальный курс и собрали кучу дополнительного контента, который поможет погрузиться в тему еще глубже. Но чтобы получить все плюшки, успевайте до 1 июня.

🎁 Что вы получите при оплате курса до 1 июня:
— Промокод PROGLIBAIна 10 000 ₽ на курс, чтобы изучать AI-агентов еще выгоднее
— Эксклюзивный лонгрид по API и ML от Proglib

💡Что разберем на курсе «AI-агенты для DS-специалистов»:
— Реализацию памяти в цепочках langchain
— Полный пайплайн RAG-системы с оценкой качества
— Основы мультиагентных систем (MAS)
— Протокол MCP и фреймворк FastMCP

Промокод также действует на курсы «Математика для Data Science» и «Алгоритмы и структуры данных».

👉 Успейте до 1 июня: https://clc.to/Cttu7A
Почему NumPy предпочтительнее Matlab, Octave, Idl или Yorick?

NumPy — высокопроизводительная библиотека с открытым исходным кодом, которая обеспечивает сложные математические и научные вычислительные возможности. Она поддерживает следующее:

⚡️Мощные функции для выполнения сложных математических операций с многомерными матрицами и массивами. Операции с ndarrays NumPy примерно на 50% быстрее по сравнению с операциями с встроенными списками с использованием циклов. Эта эффективность очень полезна, когда массивы содержат миллионы элементов
⚡️Предоставляет синтаксис индексации для легкого доступа к частям данных в большом массиве
⚡️Предоставляет встроенные функции, которые помогают легко выполнять операции, связанные с линейной алгеброй и статистикой
⚡️Для выполнения сложных вычислений с использованием NumPy требуется всего несколько строк кода


Библиотека собеса по Python
🚨 Что на самом деле происходит с увольнениями в ИТ

Каждый день в чатах разработчиков появляются сообщения «ищу работу», «команду сократили», «проект закрыли». Но никто не говорит о причинах и масштабах катастрофы. Мы запустили большое исследование, чтобы раскрыть правду!

🎯 Что мы выясним:
→ Реальные причины увольнений
→ Сколько времени нужно на поиск работы
→ Самые безумные истории смены работы

Понимая реальную ситуацию, мы сможем принимать взвешенные решения о карьере и не попасться на удочку HR-сказок.

👉 Пройдите опрос за 3 минуты и помогите всему сообществу: https://clc.to/yJ5krg
Для чего нужна функция statistics.mean()?

Функция statistics.mean() в Python используется для вычисления среднего арифметического набора данных. Она находится в модуле statistics, который нужно предварительно импортировать.

Библиотека собеса по Python
Как векторизация связана с бродкастингом в NumPy?

Векторизация подразумевает делегирование операций NumPy внутренне оптимизированным функциям языка C для получения более быстрого кода Python. В то время как бродкастинг относится к методам, которые позволяют NumPy выполнять арифметические операции, связанные с массивами. Размер или форма массивов в этом случае не имеют значения. Трансляция решает проблему несовпадающих массивов, реплицируя меньший массив вдоль большего массива, чтобы гарантировать, что оба массива имеют совместимые формы для операций NumPy. Выполнение бродкастинга перед векторизацией помогает векторизовать операции, которые поддерживают массивы разных измерений.

Библиотека собеса по Python
Как объединить два списка в список кортежей?

Для объединения в список кортежей можно использовать функцию zip, причем не только двух, но трех и более списков.

Библиотека собеса по Python