Библиотека собеса по Python | вопросы с собеседований
6.05K subscribers
653 photos
13 videos
470 links
Вопросы с собеседований по Python и ответы на них.

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/6587aafa

Для обратной связи: @proglibrary_feeedback_bot
加入频道
В продакшн-Django приложении пользователи жалуются на долгие ответы при большом количестве одновременных запросов. Как вы будете диагностировать и устранять проблему?

Проверю профилировщиком SQL-запросы (Django Debug Toolbar, New Relic, Sentry APM), чтобы найти N+1 или долгие join. Оптимизирую ORM через select_related / prefetch_related, добавлю кеширование (Redis, Memcached), connection pooling, а также настрою правильный backend для деплоя (Gunicorn/Uvicorn с несколькими воркерами).

Библиотека собеса по Python
👍1🔥1
Осталось 48 часов!

Обратный отсчёт пошёл: только до воскресенья 23:59 можно купить курс «AI-агенты для DS-специалистов» и начать учиться уже с 15 сентября.

⚡️ Это ваши +3 недели форы, чтобы спокойно разобраться в самых сложных темах и прийти к первому занятию 7 октября уже подготовленным.

👉 Забрать место
🥱1
🤓 «Сначала выучу Python идеально, а потом пойду в ML»

Звучит логично, но на практике — ловушка.
Python огромный: фреймворки, библиотеки, нюансы синтаксиса. Учить «всё сразу» можно бесконечно.

В итоге — месяцы зубрёжки, а до ML руки так и не доходят.

На старте достаточно баз: типы данных, циклы, функции, работа с библиотеками. Всё остальное лучше подтягивать в процессе решения ML-задач.

⚠️ До 1 сентября курсы можно забрать по старым ценам. Это последние выходные, когда:
ML идёт за 34 000 вместо 44 000 ₽ + Python в подарок,
два в одном: оплатите курс по математике и получите второй доступ в подарок,
— и главное: можно купить все курсы до подорожания.

👉 ML для старта в Data Science

А для будущих Data Scientist’ов у нас ещё:
Базовые модели ML и приложения
Математика для Data Science
AI-агенты для DS-специалистов (2-й поток скоро)
👍1
🤖 Что делать, если нужно сериализовать данные, которые не поддерживаются стандартным модулем json?

Если нужно сериализовать объекты, которые по умолчанию не поддерживаются модулем json, то есть несколько вариантов:

— Реализовать методы getattr и setattr в классе объекта, чтобы преобразовать его в словарь, который уже можно сериализовать в JSON.

— Использовать декоратор dataclass из модуля dataclasses для автоматической генерации методов сериализации.

— Создать собственный класс-наследник json.JSONEncoder и переопределить метод default(), чтобы указать как сериализовать нестандартные объекты.

— Использовать библиотеку marshmallow для создания схем сериализации/десериализации сложных объектов в JSON.

— Преобразовать объекты в dict или list вручную перед сериализацией с помощью методов объекта или отражения (reflection).

— Использовать другой формат сериализации, например YAML или MessagePack, который может поддерживать произвольные типы.


Библиотека собеса по Python
👍3
В высоконагруженном Python-сервисе время отклика начинает расти при увеличении числа потоков, хотя CPU используется не полностью. В чём может быть причина и как это исправить?

Причина в GIL: в Python одновременно выполняется только один поток байткода, поэтому многопоточность не даёт прироста для CPU-bound задач. Решение — использовать multiprocessing/ProcessPoolExecutor или вынести вычисления в C-расширения/NumPy.

Библиотека собеса по Python
👍4
ПОСЛЕДНИЙ ДЕНЬ
КУРСЫ ПОДОРОЖАЮТ ЗАВТРА‼️

ML за 34к вместо 44к + Python в подарок
Математика → второй доступ в подарок
— Ранний доступ к AI-агентам с 15 сентября
— И МОЖНО УСПЕТЬ КУПИТЬ ВСЁ ДО ПОДОРОЖАНИЯ

👉 Proglib Academy
🤔2
В Python-сервисе под нагрузкой заметно растёт время отклика. Профилирование показывает, что большая часть времени тратится на сериализацию и десериализацию JSON. Как вы будете искать и устранять проблему?

Сначала проверю профилером “горячие места” сериализации (cProfile, line_profiler). Для оптимизации можно заменить стандартный модуль json на более быстрые реализации (ujson, orjson), использовать pydantic/датаклассы с валидацией только там, где это нужно, или кэшировать результаты сериализации для часто используемых структур.

Библиотека собеса по Python
👍2
Что такое Django Rest Framework (DRF)?

Django Rest Framework — это фреймворк с открытым исходным кодом, основанный на Django, который позволяет быстро создавать RESTful API.

Кстати, у нас есть курс по машинному обучению для старта в Data Science:
https://proglib.academy/machine-learning

Библиотека собеса по Python
👍1