Библиотека собеса по Python | вопросы с собеседований
6.1K subscribers
638 photos
10 videos
410 links
Вопросы с собеседований по Python и ответы на них.

По рекламе: @proglib_adv

Учиться у нас: https://proglib.io/w/6587aafa

Для обратной связи: @proglibrary_feeedback_bot
加入频道
🔥 Знакомьтесь, преподаватель нашего нового курса по ML — Мария Жарова.

В карточках рассказали, чем Мария занимается и какие советы даёт тем, кто хочет расти в IT и Data Science ☝️

А если вы уже поняли, что тянуть нечего, начните свой путь в ML правильно: с реальной практикой, поддержкой ментора и видимым результатом.

👉 Записывайтесь на курс
👍1
Что вы подразумеваете под шаблонизаторами во Flask?

Шаблонизаторы используются для создания веб-приложений, состоящих из нескольких компонентов. Они применяются для серверных приложений, которые не создаются как API и работают на одном сервере. Шаблоны также позволяют быстро визуализировать серверные данные, которые должны быть предоставлены приложению, такие как body, navigation, footer, панель управления и так далее.

Ejs, Jade, Pug, Mustache, HandlebarsJS, Jinja2 и Blade — некоторые из популярных шаблонизаторов.


Библиотека собеса по Python
👍1
Что такое Flask Sijax?

Sijax — это библиотека Python/jQuery, которая упрощает использование AJAX в веб-приложениях для приложений Flask. Flask Sijax также предоставляет простой способ передачи данных JSON между сервером и клиентом.

Библиотека собеса по Python
👍1
🔥 Вы ещё можете застать старый добрый Proglib — с вечным доступом к курсам.

С 1 августа всё меняется: навсегда — останутся только те, кто успел купить сейчас.

-40% на все курсы. Включая обновлённый Python (кроме курса по AI-агентам)

Это не просто распродажа. Это — последняя точка входа в Proglib Academy по старым правилам.

📚 Выбрать и забрать свой курс навсегда → https://clc.to/TBtqYA
👍2
Какие типы приложений можно создавать с помощью Flask?

Мы можем разработать практически любое веб-приложение с помощью Flask. Flask настолько универсален и адаптируем, что его можно быстро интегрировать с другими технологиями. Например, Flask можно использовать совместно с бессерверными приложениями NodeJS, AWS Lambda и другими сторонними сервисами для создания современных систем. Мы также можем создавать одностраничные приложения, приложения на базе RESTful API, приложения SAS, небольшие и средние веб-сайты, статические веб-сайты, приложения машинного обучения, микросервисы и бессерверные приложения.

Библиотека собеса по Python
👍31
⚡️ Мы запускаем онлайн-курс по машинному обучению для Data Science.

Хочешь войти в Data Science, но не знаешь, с чего начать?
А может, ты уже в теме, но чувствуешь, что знаний не хватает?

Старт курса — 12 августа, и это отличный шанс пройти весь путь — от теории до уверенного применения.

Что внутри:
— от линейных моделей и градиентного спуска до бустинга и рекомендательных систем
— реальные примеры, практика, задачи и живая менторская поддержка
— всё, что нужно, чтобы не просто разобраться, а применять ML в реальных проектах

Ведет курс Мария Жарова:
ML-инженер в Wildberries, преподаватель МФТИ, ТГУ и МИФИ, практик и автор канала @data_easy

🎁 По промокоду Earlybird — скидка 10.000 рублей, только до 27 июля.

Для первых 10 студентов мы подготовили эксклюзивный лонгрид по теме курса, который позволит начать учиться уже сейчас.

👉 Записаться на курс
👍1
Что делать если нужно сериализовать данные, которые не поддерживаются стандартным модулем json?

Если нужно сериализовать объекты, которые по умолчанию не поддерживаются модулем json, то есть несколько вариантов:

— Реализовать методы getattr и setattr в классе объекта, чтобы преобразовать его в словарь, который уже можно сериализовать в JSON.

— Использовать декоратор dataclass из модуля dataclasses для автоматической генерации методов сериализации.

— Создать собственный класс-наследник json.JSONEncoder и переопределить метод default(), чтобы указать как сериализовать нестандартные объекты.

— Использовать библиотеку marshmallow для создания схем сериализации/десериализации сложных объектов в JSON.

— Преобразовать объекты в dict или list вручную перед сериализацией с помощью методов объекта или отражения (reflection).

— Использовать другой формат сериализации, например YAML или MessagePack, который может поддерживать произвольные типы.

Библиотека собеса по Python
👍2
🔥 Хороший ML-разработчик не начинает с нейросетей

На собеседовании по ML System Design кандидату дают задачу «предсказать отток», а он сразу лезет в нейросети. Красиво, модно, дорого.

Но профи думает иначе:

💭 Логрегрессия? Градиентный бустинг?
💭 А сколько у нас данных и времени?
💭 Что с интерпретируемостью?

Потому что не выбрать адекватную модель — это уже ошибка.

Нейросети — это круто. Но без понимания классического ML вы просто «подключаете модельку», а не строите решения.

➡️ На курсе разберём:

— линейные модели, деревья, PCA, кластеризацию
— метрики, переобучение, bias vs variance
— инженерные подводные камни, которые идут сразу после fit()

🎁 Скидка 10 000₽ по промокоду Earlybird, только до 27 июля.

А ещё — подарок для первых 10 участников: специальный лонгрид по теме курса, чтобы вы могли начать погружение в материал уже сегодня.

🔗 Успей записаться — и начни карьеру в Data Science уже через 3 месяца!
Что делать если нужно сериализовать данные, которые не поддерживаются стандартным модулем json?

Если нужно сериализовать объекты, которые по умолчанию не поддерживаются модулем json, то есть несколько вариантов:

— Реализовать методы __getattr__ и __setattr__ в классе объекта, чтобы преобразовать его в словарь, который уже можно сериализовать в JSON.

— Использовать декоратор dataclass из модуля dataclasses для автоматической генерации методов сериализации.

— Создать собственный класс-наследник json.JSONEncoder и переопределить метод default(), чтобы указать как сериализовать нестандартные объекты.

— Использовать библиотеку marshmallow для создания схем сериализации/десериализации сложных объектов в JSON.

— Преобразовать объекты в dict или list вручную перед сериализацией с помощью методов объекта или отражения (reflection).

— Использовать другой формат сериализации, например YAML или MessagePack, который может поддерживать произвольные типы.


Библиотека собеса по Python