Python RU
13.4K subscribers
859 photos
40 videos
36 files
1.12K links
Все для python разработчиков

админ - @haarrp

@python_job_interview - Python собеседования

@ai_machinelearning_big_data - машинное обучение

@itchannels_telegram - 🔥лучшие ит-каналы

@programming_books_it - it книги

@pythonl

РКН: clck.ru/3Fmy2j
加入频道
Forwarded from Data science Архив бесплатных курсов
👩‍💻 Отличный бесплатный курс по Python для DataScience от FreeCodeCamp!

🌟 Вы изучите ключевые концепции, такие как структуры данных, алгоритм, объектно-ориентированное программирование и то, как выполнять сложные вычисления с использованием различных инструментов. Этот комплексный курс познакомит вас с основами научных вычислений, включая структуры данных и алгоритмы

🔗 Ссылка: *клик*

#курс #datascience #python

freecourses
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
⚡️ Релиз Python 3.13 и Git 2.47 ⚡️

Python 3.13, спустя ровно год с начала разработки, выпущен в релиз. Поддержка версии 3.13 планируется в течение 1.5 лет, и, после окончания этого срока еще 3.5 года версия будет получать критические обновления, связанные с безопасностью.

Ключевые изменения:

🟢экспериментальный компилятор JIT. Запуск в CPython –enable-experimental-jit;

🟢экспериментальный режим сборки CPython без GIL. Запуск –without-gil;

🟢интерактивный интерпретатор с многострочным редактированием, по подобию PyPy;

🟢изменена семантика locals() для функций, генераторов и сопрограмм;

🟢включена в состав модифицированная версия mimalloc от Microsoft;

🟢компилятор теперь очищает лидирующие пробелы из docstring;

🟢в модуле dbm реализован бэкенд dbm.sqlite3 по умолчанию для новых файлов;

🟢typing.TypeIs стала более интуитивной, чем typing.TypeGuard;

🟢typing.ReadOnly позволяет помечать элементы TypeDicts, доступные только для чтения;

🟢warnings.deprecated() добавлена для указания устаревших элементов в системе типов;

🟢удалены ifc, audioop, chunk, cgi, cgitb, crypt, imghdr, mailcap, msilib, nis, nntplib, ossaudiodev, pipes, sndhdr, spwd, sunau, telnetlib, uu, xdrlib и lib2to3 из стандартной библиотеки;

🟢в copy добавлена copy.replace();

🟢в os добавлены функции для работы с таймером через timerfd;

🟢random получил интерфейс CLI;

🟢macOS версий 10.9 - 10.12 больше не поддерживаются.

▶️Страница релиза 3.13 ▶️Документация 3.13


Git выпустил Git 2.47 с функциями и исправлениями ошибок от более чем 83 разработчиков, 28 из которых - новые.

В этой версии основное внимание уделяется повышению производительности и улучшению пользовательского опыта.

Основные изменения:

🟠инкрементные многопакетные индексы: экспериментальная функция, позволяющая сохранять несколько многопакетных индексов в цепочке слоев MIDX;

🟠ускорена идентификация базовой ветви : новый инструмент for-each-ref помогает определять базовую ветвь коммита, сводя к минимуму уникальные коммиты от первого родителя и упрощая идентификацию;

🟠обновлена политика поддержки: в Git 2.47 представлен новый документ, описывающий требования к поддержке для различных платформ, включая стандарты C99 или C11 и стабильные версии зависимостей;

🟠DEVELOPER=1 mode: теперь при компиляции с DEVELOPER=1 наличие неиспользуемых параметров является ошибкой времени компиляции;

🟠остальные улучшения : усовершенствования серверной части reftable, обновление платформы модульного тестирования, усовершенствование git fsck и интеграция кода Visual Studio с git mergetool.

▶️Полный список изменений


@ai_machinelearning_big_data

#AI #ML #Python #Git #Release
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Курс по MySQL с использованием Python! (2024)

🌟 Небольшой курс для новичков по работе с БД MySQL через Python код!

🔗 Ссылка: *клик*

#курс #python #mysql

@pro_python_code
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Создание конвейера потоковой передачи данных в реальном времени с использованием Kafka, Flink и Postgres!

🕞 Продолжительность: 1:00:51

🔗 Ссылка: *клик*

#курс #python #kafka

@pro_python_code
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🖥 Крутой Roadmap для Python-разработчика в 2024 году

1. Основы Python

Изучите:
- Переменные и типы данных
- Условные операторы и циклы
- Функции

2. Основные структуры данных

Практика:
- Списки, множества, словари
- Стек, очередь, связанный список
- Алгоритмы сортировки и поиска

3. Погружение в объектно-ориентированное программирование (ООП)

Понять:
- Классы и объекты
- Наследование
- Инкапсуляция и полиморфизм

4. Изучение веб-фреймворков

Начните с:
- Flask (для начинающих)
- Django (для опытных разработчиков)

5. Разработка API с использованием Flask/Django

Ключевые концепции:
- Операции CRUD
- Аутентификация
- Работа с данными JSON

6. Интеграция баз данных с Python

- Базы данных SQL: SQLite, PostgreSQL
- NoSQL базы данных: MongoDB

7. Тестирование кода на Python

Основные инструменты:
- Модульное тестирование (unittest, pytest)
- Отладка (pdb)

8. Продвинутые темы
Python

Глубокое погружение:
- Декораторы
- Генераторы
- Менеджеры контекста

9. Развёртывание приложений Python

Методы развёртывания:
- Разворачивание на Heroku
- Контейнеризация с помощью Docker

10. Создание и развёртывание проектов

Реализуйте проекты:
- Веб-приложения (Flask/Django)
- Сервисы API
- Проекты анализа данных

#doc #python #roadmap

@pro_python_code
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 При работе с асинхронным кодом на #Python не используйте "time.sleep()", так как это заблокирует основной цикл.

Вместо этого используйте `async.sleep()`.

@pro_python_code
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Курс: Базовое приложение на FastAPI!

🕖 Продолжительность: 1:41:06

🔗 Ссылка: *клик*

#курс #python #fastapi
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ СuML от NVIDIA: Scikit-learn на скорости GPU – без единой строчки нового кода!

Все мы любим scikit-learn за его простоту и мощь. Но что если ваши модели обучаются слишком долго на больших данных? 🤔 NVIDIA предлагает решение!

Вы берете свой обычный скрипт cо scikit-learn, добавляете всего две строки в начало, и он начинает работать в 10, 50, а то и 100+ раз быстрее на NVIDIA GPU! 🔥

Как это работает?

Библиотека cuml от NVIDIA содержит супероптимизированные для GPU версии многих алгоритмов машинного обучения. С помощью простого вызова cuml.patch.apply() вы "патчите" установленный у вас scikit-learn прямо в памяти.

Теперь, когда вы вызываете, например, KNeighborsClassifier или PCA из sklearn:

▶️Патч проверяет, есть ли у вас GPU NVIDIA.
▶️Проверяет, есть ли в cuml быстрая GPU-версия этого алгоритма.
▶️Если да – запускает ускоренную версию на GPU! 🏎️
▶️Если нет (нет GPU или алгоритм не поддерживается) – спокойно запускает обычную CPU-версию scikit-learn.

Ключевые преимущества:

✔️ Нулевые изменения кода: Ваш scikit-learn код остается прежним. Добавляете только 2 строчки:
import cuml.patch и cuml.patch.apply().
✔️ Колоссальное ускорение: Получите прирост производительности на порядки для поддерживаемых алгоритмов (KNN, PCA, линейные модели, Random Forest (инференс), UMAP, DBSCAN, KMeans и др.) за счет мощи GPU.
✔️Автоматическое переключение между GPU и CPU. Ваш скрипт будет работать в любом случае.

Топ инструмент для всех, кто работает с scikit-learn на задачах, требующих значительных вычислений, и у кого есть GPU от NVIDIA.

👇 Как использовать:

Установите RAPIDS cuml (лучше через conda, см. сайт RAPIDS):


python
conda install -c rapidsai -c conda-forge -c nvidia cuml rapids-build-backend


Добавьте в начало скрипта:


import cuml.patch
cuml.patch.apply()


Используйте scikit-learn как обычно!

Попробуйте и почувствуйте разницу! 😉

Блог-пост
Colab
Github
Ускоряем Pandas

@ai_machinelearning_big_data


#python #datascience #machinelearning #scikitlearn #rapids #cuml #gpu #nvidia #ускорение #машинноеобучение #анализданных
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 YT Channel Downloader — интуитивно понятное приложение с графическим интерфейсом созданное для скачивания медиаконтента с YouTube.

Используя надежность библиотек yt-dlp, Scrapetube и pytube и дополненный современным графическим интерфейсом на PyQt 6, этот инструмент обеспечивает удобную загрузку вашего любимого контента.


🔗 GitHub

#python #github #opensource
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM