Пифагор VS домашка по математике 📐
В науке редко случаются истории, похожие на открытие Ханны, о котором мы недавно писали. Но в последнее время такие сюжеты всё чаще мелькают в новостях.
🟢 В 2023 году две ученицы Академии Святой Марии в Новом Орлеане — Кальсия Джонсон и Неки’Я Джексон — нашли новый способ доказать теорему Пифагора.
Всё началось банально: учитель дал классу задание на рождественские каникулы — придумать собственное доказательство. Старшеклассницы приняли вызов. Они обратились к тригонометрии. И именно это стало сенсацией — считалось, что это невозможно сделать через тригонометрические тождества.
Девушки использовали закон синусов, который не опирается на теорему Пифагора. Они построили доказательство на особых конфигурациях подобных треугольников и их бесконечном ряде.
Будучи единственными школьницами среди докладчиков, они выступили на конференции Американского математического общества и представили доказательство в рецензируемый журнал. История получила широкий резонанс: о них писали от The Guardian до ABC News.
Но самое интересное было впереди. После первого успеха Кальсия и Неки’Я нашли метод, который позволяет строить целое семейство подобных решений. Так, они выпустили статью ещё с десятью новыми доказательствами в American Mathematical Monthly.
Мораль: даже в такой древней области математики ещё есть место открытиям. И главное, что они могут прийти откуда угодно — даже из школьных уроков. Главное — любопытство и желание проверить себя.
А вы помните, как впервые узнали о теореме Пифагора? Делитесь историями и своими доказательствами в комментариях!
#это_база
В науке редко случаются истории, похожие на открытие Ханны, о котором мы недавно писали. Но в последнее время такие сюжеты всё чаще мелькают в новостях.
Всё началось банально: учитель дал классу задание на рождественские каникулы — придумать собственное доказательство. Старшеклассницы приняли вызов. Они обратились к тригонометрии. И именно это стало сенсацией — считалось, что это невозможно сделать через тригонометрические тождества.
Так, например, думал американский математик Элиша Скотт Лумис. В 1927 году он выпустил книгу «The Pythagorean Proposition», в которой привёл 344 доказательства теоремы Пифагора. Его приёмы и техники можно найти буквально везде — мы рекомендуем этот ресурс.
Тригонометрию исключали потому, что привычные школьные формулы вроде sin²x + cos²x = 1 сами выводятся из теоремы Пифагора. Любая попытка доказательства через них превращается в круговую аргументацию. Однако наши героини нашли другой путь.
Девушки использовали закон синусов, который не опирается на теорему Пифагора. Они построили доказательство на особых конфигурациях подобных треугольников и их бесконечном ряде.
Будучи единственными школьницами среди докладчиков, они выступили на конференции Американского математического общества и представили доказательство в рецензируемый журнал. История получила широкий резонанс: о них писали от The Guardian до ABC News.
Но самое интересное было впереди. После первого успеха Кальсия и Неки’Я нашли метод, который позволяет строить целое семейство подобных решений. Так, они выпустили статью ещё с десятью новыми доказательствами в American Mathematical Monthly.
Открытие новоорлеанских школьниц стало громким инфоповодом в математическом сообществе. Но всё же тригонометрическое доказательство теоремы существовало и до них. Оно было сделано в 2009 году английским математиком Эдвардом Зимбой.
Метод, придуманный школьницами, отличается от его идей. К примеру, профессор Альваро Лозейо-Робледо назвал рассуждения девушек «по-настоящему красивыми». Подробный разбор их метода с иллюстрациями можно посмотреть тут или прочитать здесь.
Мораль: даже в такой древней области математики ещё есть место открытиям. И главное, что они могут прийти откуда угодно — даже из школьных уроков. Главное — любопытство и желание проверить себя.
А вы помните, как впервые узнали о теореме Пифагора? Делитесь историями и своими доказательствами в комментариях!
#это_база
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥25❤11👍1👀1