🌀 Математический арт и ряды Фурье
Вводится набор сигналов (рисунок), который затем передается в алгоритм дискретного преобразования Фурье, которые перерисовывает это с помощью конфигурации из окружностей. Что-то подобное, но в упрощенном виде встречается в стопоходящем механизме Чебышёва — механизм, преобразующий вращательное движение в движение, приближённое к прямолинейному.
💡 Physics.Math.Code
#gif #геометрия #физика #математика #math #physics #geometry #Фурье #видеоуроки
Вводится набор сигналов (рисунок), который затем передается в алгоритм дискретного преобразования Фурье, которые перерисовывает это с помощью конфигурации из окружностей. Что-то подобное, но в упрощенном виде встречается в стопоходящем механизме Чебышёва — механизм, преобразующий вращательное движение в движение, приближённое к прямолинейному.
💡 Physics.Math.Code
#gif #геометрия #физика #математика #math #physics #geometry #Фурье #видеоуроки
👍125🔥46❤10😍3
🌀 Математический арт и ряды Фурье
Вводится набор сигналов (рисунок), который затем передается в алгоритм дискретного преобразования Фурье, которые перерисовывает это с помощью конфигурации из окружностей. Что-то подобное, но в упрощенном виде встречается в стопоходящем механизме Чебышёва — механизм, преобразующий вращательное движение в движение, приближённое к прямолинейному.
В более общем виде, рядом Фурье элемента некоторого пространства функций называется разложение этого элемента по полной системе ортонормированных функций или другими словами по базису, состоящему из ортогональных функций. В зависимости от используемого вида интегрирования говорят о рядах Фурье — Римана, Фурье — Лебега и т. п.
Существует множество систем ортогональных многочленов и других ортогональных функций (например, функции Хаара, Уолша и Котельникова), по которым может быть произведено разложение функции в ряд Фурье.
Разложение функции в ряд Фурье является мощным инструментом при решении самых разных задач благодаря тому, что ряд Фурье прозрачным образом ведёт себя при дифференцировании, интегрировании, сдвиге функции по аргументу и свёртке функций.
Существуют многочисленные обобщения рядов Фурье в различных разделах математики. Например, любую функцию на конечной группе можно разложить в ряд, аналогичный ряду Фурье, по матричным элементам неприводимых представлений этой группы (теорема полноты).
Хотя первоначальной мотивацией было решение уравнения теплопроводности, позже стало очевидно, что те же методы можно применять к широкому кругу математических и физических задач, особенно тех, которые включают линейные дифференциальные уравнения с постоянными коэффициентами, для которых собственные решения являются синусоидами. Ряд Фурье имеет много применений в области электротехники, вибрации анализа, акустики, оптики, обработки сигналов, обработки изображений, квантовой механики, эконометрики, теории перекрытия-оболочки.#gif #геометрия #физика #математика #math #physics #geometry #Фурье #видеоуроки
💡 Physics.Math.Code // @physics_lib
Вводится набор сигналов (рисунок), который затем передается в алгоритм дискретного преобразования Фурье, которые перерисовывает это с помощью конфигурации из окружностей. Что-то подобное, но в упрощенном виде встречается в стопоходящем механизме Чебышёва — механизм, преобразующий вращательное движение в движение, приближённое к прямолинейному.
В более общем виде, рядом Фурье элемента некоторого пространства функций называется разложение этого элемента по полной системе ортонормированных функций или другими словами по базису, состоящему из ортогональных функций. В зависимости от используемого вида интегрирования говорят о рядах Фурье — Римана, Фурье — Лебега и т. п.
Существует множество систем ортогональных многочленов и других ортогональных функций (например, функции Хаара, Уолша и Котельникова), по которым может быть произведено разложение функции в ряд Фурье.
Разложение функции в ряд Фурье является мощным инструментом при решении самых разных задач благодаря тому, что ряд Фурье прозрачным образом ведёт себя при дифференцировании, интегрировании, сдвиге функции по аргументу и свёртке функций.
Существуют многочисленные обобщения рядов Фурье в различных разделах математики. Например, любую функцию на конечной группе можно разложить в ряд, аналогичный ряду Фурье, по матричным элементам неприводимых представлений этой группы (теорема полноты).
Хотя первоначальной мотивацией было решение уравнения теплопроводности, позже стало очевидно, что те же методы можно применять к широкому кругу математических и физических задач, особенно тех, которые включают линейные дифференциальные уравнения с постоянными коэффициентами, для которых собственные решения являются синусоидами. Ряд Фурье имеет много применений в области электротехники, вибрации анализа, акустики, оптики, обработки сигналов, обработки изображений, квантовой механики, эконометрики, теории перекрытия-оболочки.#gif #геометрия #физика #математика #math #physics #geometry #Фурье #видеоуроки
💡 Physics.Math.Code // @physics_lib
👍87🔥32❤17🤯2🤔1
🌀 Математический арт и ряды Фурье
Вводится набор сигналов (рисунок), который затем передается в алгоритм дискретного преобразования Фурье, которые перерисовывает это с помощью конфигурации из окружностей. Что-то подобное, но в упрощенном виде встречается в стопоходящем механизме Чебышёва — механизм, преобразующий вращательное движение в движение, приближённое к прямолинейному.
В более общем виде, рядом Фурье элемента некоторого пространства функций называется разложение этого элемента по полной системе ортонормированных функций или другими словами по базису, состоящему из ортогональных функций. В зависимости от используемого вида интегрирования говорят о рядах Фурье — Римана, Фурье — Лебега и т. п.
Существует множество систем ортогональных многочленов и других ортогональных функций (например, функции Хаара, Уолша и Котельникова), по которым может быть произведено разложение функции в ряд Фурье.
Разложение функции в ряд Фурье является мощным инструментом при решении самых разных задач благодаря тому, что ряд Фурье прозрачным образом ведёт себя при дифференцировании, интегрировании, сдвиге функции по аргументу и свёртке функций.
Существуют многочисленные обобщения рядов Фурье в различных разделах математики. Например, любую функцию на конечной группе можно разложить в ряд, аналогичный ряду Фурье, по матричным элементам неприводимых представлений этой группы (теорема полноты).
Хотя первоначальной мотивацией было решение уравнения теплопроводности, позже стало очевидно, что те же методы можно применять к широкому кругу математических и физических задач, особенно тех, которые включают линейные дифференциальные уравнения с постоянными коэффициентами, для которых собственные решения являются синусоидами. Ряд Фурье имеет много применений в области электротехники, вибрации анализа, акустики, оптики, обработки сигналов, обработки изображений, квантовой механики, эконометрики, теории перекрытия-оболочки.#gif #геометрия #физика #математика #math #physics #geometry #Фурье #видеоуроки
💡 Physics.Math.Code // @physics_lib
Вводится набор сигналов (рисунок), который затем передается в алгоритм дискретного преобразования Фурье, которые перерисовывает это с помощью конфигурации из окружностей. Что-то подобное, но в упрощенном виде встречается в стопоходящем механизме Чебышёва — механизм, преобразующий вращательное движение в движение, приближённое к прямолинейному.
В более общем виде, рядом Фурье элемента некоторого пространства функций называется разложение этого элемента по полной системе ортонормированных функций или другими словами по базису, состоящему из ортогональных функций. В зависимости от используемого вида интегрирования говорят о рядах Фурье — Римана, Фурье — Лебега и т. п.
Существует множество систем ортогональных многочленов и других ортогональных функций (например, функции Хаара, Уолша и Котельникова), по которым может быть произведено разложение функции в ряд Фурье.
Разложение функции в ряд Фурье является мощным инструментом при решении самых разных задач благодаря тому, что ряд Фурье прозрачным образом ведёт себя при дифференцировании, интегрировании, сдвиге функции по аргументу и свёртке функций.
Существуют многочисленные обобщения рядов Фурье в различных разделах математики. Например, любую функцию на конечной группе можно разложить в ряд, аналогичный ряду Фурье, по матричным элементам неприводимых представлений этой группы (теорема полноты).
Хотя первоначальной мотивацией было решение уравнения теплопроводности, позже стало очевидно, что те же методы можно применять к широкому кругу математических и физических задач, особенно тех, которые включают линейные дифференциальные уравнения с постоянными коэффициентами, для которых собственные решения являются синусоидами. Ряд Фурье имеет много применений в области электротехники, вибрации анализа, акустики, оптики, обработки сигналов, обработки изображений, квантовой механики, эконометрики, теории перекрытия-оболочки.#gif #геометрия #физика #математика #math #physics #geometry #Фурье #видеоуроки
💡 Physics.Math.Code // @physics_lib
👍69❤20🔥16❤🔥2🤔1