This media is not supported in your browser
VIEW IN TELEGRAM
Момент перегорание лампочки 💥
При горении лампочки вольфрамовая спираль нагревается до огромной температуры, до белого каления. Меняется её сопротивление, металл испаряется, спираль под действием силы тяжести провисает, и туда стекает часть расплавленной спирали. В результате всего этого та часть спирали, что находится в точках крепления, истончается сильнее и в момент загорания лампочки перегорает, потому что она тоньше и не выдерживает ток (накаляется быстрее). #gif #физика #электричество #электродинамика #physics
💡 Physics.Math.Code // @physics_lib
При горении лампочки вольфрамовая спираль нагревается до огромной температуры, до белого каления. Меняется её сопротивление, металл испаряется, спираль под действием силы тяжести провисает, и туда стекает часть расплавленной спирали. В результате всего этого та часть спирали, что находится в точках крепления, истончается сильнее и в момент загорания лампочки перегорает, потому что она тоньше и не выдерживает ток (накаляется быстрее). #gif #физика #электричество #электродинамика #physics
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🐝 «Nano Bee». Двигатель объемом 0,006 см³
Как вам двигатель, который может расположиться на монетке целиком. Да, работающий дизельный двигатель! Главный «гений» этих механизмов – изобретатель Рональд Валентайн, инженерный вундеркинд, обучавшийся в Германии и начавший делать самые маленькие двигатели внутреннего сгорания в мире. Своей жизненной целью Рональд ставит доказать всем, что несмотря на то, что его двигатели очень малы, они на самом деле работают. Все двигатели Валентайна собраны полностью вручную, на станке с ЧПУ ни одна деталь не создавалась. Это высококачественные маленькие дизельные звери.
📷 Смотреть фотографии мини-ДВС
Самый маленький из них - это дизельный двигатель "Nano Bee" размером в 22 мм в длину, с диаметром поршня 2 мм, ходом – 3 мм и объемом двигателя 0,006 куб. см . "Nano Bee" имеет впуск и выпуск, диаметром по 3 мм, и общий вес всего 3 грамма. Тем не менее, двигатель раскручивает 32-мм винт до 12800 оборотов в минуту! Крис Валентайн сделал "Nano Bee" из алюминия и стального прутка, допуски изготовления потрясают - до одной десятитысячной сантиметра. #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции
Самый маленький четырехцилиндровый ДВС в мире
⏳ Звёздообразный или радиальный двигатель
⚙️ Сферически объемная роторная машина и ещё немного о необычных вариантах ДВС.
⚙️ Роторный двигатель
💥 💨 Как работает двухтактный двигатель скутера
⚙️ Сравнение моторных масел
⚙️ Авиационный гироскоп
💡 Physics.Math.Code // @physics_lib
Как вам двигатель, который может расположиться на монетке целиком. Да, работающий дизельный двигатель! Главный «гений» этих механизмов – изобретатель Рональд Валентайн, инженерный вундеркинд, обучавшийся в Германии и начавший делать самые маленькие двигатели внутреннего сгорания в мире. Своей жизненной целью Рональд ставит доказать всем, что несмотря на то, что его двигатели очень малы, они на самом деле работают. Все двигатели Валентайна собраны полностью вручную, на станке с ЧПУ ни одна деталь не создавалась. Это высококачественные маленькие дизельные звери.
📷 Смотреть фотографии мини-ДВС
Самый маленький из них - это дизельный двигатель "Nano Bee" размером в 22 мм в длину, с диаметром поршня 2 мм, ходом – 3 мм и объемом двигателя 0,006 куб. см . "Nano Bee" имеет впуск и выпуск, диаметром по 3 мм, и общий вес всего 3 грамма. Тем не менее, двигатель раскручивает 32-мм винт до 12800 оборотов в минуту! Крис Валентайн сделал "Nano Bee" из алюминия и стального прутка, допуски изготовления потрясают - до одной десятитысячной сантиметра. #физика #physics #механика #видеоуроки #научные_фильмы #ДВС #техника #опыты #лекции
Самый маленький четырехцилиндровый ДВС в мире
⚙️ Авиационный гироскоп
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Первое в мире моторное масло было запатентовано в 1873 году американским доктором Джоном Эллисом. В 1866 году Эллис изучал свойства сырой нефти в медицинских целях, но обнаружил, что сырая нефть обладает хорошими смазочными свойствами. Эллис залил экспериментальную жидкость в заклинившие клапаны большого V-образного парового двигателя. В результате клапаны освободились и стали двигаться свободнее, а Джон Эллис зарегистрировал бренд Valvoline — первый в мире бренд моторного масла.
Вязкость — одно из важнейших свойств масла, определяющее его применимость в двигателях различных типов. Различают динамическую, кинематическую и техническую вязкость. Динамическая вязкость обусловлена внутренним трением между движущимися слоями масла и измеряется в пуазах (П). Кинематическая вязкость — определяется как отношение динамической вязкости к плотности при той же температуре и измеряется в сантистоксах (сСт). Техническая, или условная вязкость определяется как отношение времени истечения из вискозиметра 200 мл масла, взятого в секундах, ко времени истечения из того же вискозиметра при тех же условиях 200 мл воды. В настоящее время для оценки этого свойства масла как правило используется индекс вязкости, характеризующий пологость кривой зависимости кинематической вязкости масла от температуры. #механика #динамика #физика #кинематика #техника #наука #science #physics #вязкость
🟠 Принцип работы моторного масла [5 видео]
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Физика,_пособие_для_поступающих_в_вузы_1979_Кембровский_Г_С_,_Галко.djvu
40.7 MB
📙 Физика, пособие для поступающих в вузы [1979] Кембровский Г.С., Галко С.И., Ткачев Л.И.
Пособие включает необходимый для подготовки к экзаменам в вуз материал. Четвертое издание переработано с учетом школьной программы по физике (на 1979 год).
Пособие составлено в соответствии с программой вступительных экзаменов в вузы. Оно содержит основной теоретический материал по элементарной физике, примеры решения задач с соответствующим анализом результатов и выводами, вопросы для самоконтроля, а также задачи для самостоятельного решения. Книга предназначена для учащихся старших классов, готовящихся к сдаче вступительных экзаменов по физике в вузы, а также для слушателей заочных и вечерних подготовительных курсов. Может быть использована преподавателями физики средних школ и техникумов. Издание 1970 года. #физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
Пособие включает необходимый для подготовки к экзаменам в вуз материал. Четвертое издание переработано с учетом школьной программы по физике (на 1979 год).
Пособие составлено в соответствии с программой вступительных экзаменов в вузы. Оно содержит основной теоретический материал по элементарной физике, примеры решения задач с соответствующим анализом результатов и выводами, вопросы для самоконтроля, а также задачи для самостоятельного решения. Книга предназначена для учащихся старших классов, готовящихся к сдаче вступительных экзаменов по физике в вузы, а также для слушателей заочных и вечерних подготовительных курсов. Может быть использована преподавателями физики средних школ и техникумов. Издание 1970 года. #физика #квантовая_физика #термодинамика #подборка_книг #механика #physics #оптика #мкт #атомная_физика #ядерная_физика #электричество #магнетизм
💡 Physics.Math.Code // @physics_lib
This media is not supported in your browser
VIEW IN TELEGRAM
▪️ Прессуемый материал укладывают на платформу большого поршня.
▪️ С помощью малого поршня создают большое дополнительное давление на жидкость.
▪️ Согласно закону Паскаля, давление передаётся без изменений в каждую точку жидкости, находящейся в цилиндрах. Давление такой же величины будет действовать на поршень большого диаметра.
▪️ Так как площадь большого поршня больше площади малого, сила, которая действует на большой поршень, будет больше силы, действующей на малый поршень.
▪️ Под действием этой силы поршень большого диаметра с расположенным на нём телом будет подниматься вверх, пока оно не окажется сжатым между поршнем и верхней неподвижной платформой.
▪️ Повторным движением поршня малой площади жидкость перекачивают из малого цилиндра в большой. Для этого малый поршень поднимают, открывая клапан. В образующееся пространство под малым поршнем из-за создаваемого вакуума засасывается жидкость. При опускании малого поршня жидкость, давя на клапан, его закрывает, открывая при этом клапан. Открывающийся клапан даёт возможность жидкости перетечь в большой сосуд.
🔩 Гидравлический пресс — это простейшая гидравлическая машина, предназначенная для создания значительных сжимающих усилий. Ранее назывался «пресс Брама», так как изобретён и запатентован Джозефом Брама в 1795 году. Гидравлический пресс состоит из двух сообщающихся сосудов-цилиндров с поршнями разного диаметра. Цилиндр заполняется водой, маслом или другой подходящей жидкостью. По закону Паскаля давление в любом месте неподвижной жидкости одинаково по всем направлениям и одинаково передается по всему объёму. Силы, действующие на поршни, пропорциональны площадям этих поршней. Поэтому выигрыш в силе, создаваемый идеальным гидравлическим прессом, равен отношению площадей поршней. Гидравлический пресс нашёл применение во многих отраслях промышленности от изготовления деталей (штамповки) до прессовки мусора в рабочей камере мусоровоза. #physics #опыты #физика #gif #анимация #видеоуроки #гидравлика #гидродинамика
💧 Принцип работы гидравлического пресса
💨⚾️ Эффект зависания шарика в потоке воздуха
💧 Гидравлика (12 частей)
❌ Незнание физики не освобождает от выполнения её законов
💨 Шарик в потоке жидкости 🟡
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
☢️ Уран-238 в камере Вильсона 🫧
Камера Вильсона (конденсационная камера, туманная камера) — координатный детектор быстрых заряженных частиц, в котором используется способность ионов выполнять роль зародышей капель жидкости в переохлажденном перенасыщенном паре.
Для создания переохлаждённого пара используется быстрое адиабатическое расширение, сопровождающееся резким понижением температуры.
Быстрая заряженная частица, двигаясь сквозь облако перенасыщенного пара, ионизирует его. Процесс конденсации пара происходит быстрее в местах образования ионов. Как следствие, там, где пролетела заряженная частица, образуется след из капелек воды, который можно сфотографировать. Именно из-за такого вида треков камера получила свое английское название — облачная камера (англ. cloud chamber).
Камеры Вильсона обычно помещают в магнитное поле, в котором траектории заряженных частиц искривляются. Определение радиуса кривизны траектории позволяет определить удельный электрический заряд частицы, а, следовательно, идентифицировать её.
Камеру изобрел в 1912 году шотландский физик Чарльз Вильсон. За изобретение камеры Вильсон получил Нобелевскую премию по физике 1927 года. В 1948 за совершенствование камеры Вильсона и проведенные с ней исследования Нобелевскую премию получил Патрик Блэкетт. #физика #радиактивность #physics #science #ядерная_физика #видеоуроки #наука #опыты #эксперименты
🖥 How Scientists Discovered Atoms? // Как ученые открыли атомы?
💫 Тайна вещества. Научно-популярный фильм СССР 1956 г.
🔥 В СССР делали радиоизотопные термоэлектрические генераторы (РИТЭГи).
💡 Physics.Math.Code // @physics_lib
Камера Вильсона (конденсационная камера, туманная камера) — координатный детектор быстрых заряженных частиц, в котором используется способность ионов выполнять роль зародышей капель жидкости в переохлажденном перенасыщенном паре.
Для создания переохлаждённого пара используется быстрое адиабатическое расширение, сопровождающееся резким понижением температуры.
Быстрая заряженная частица, двигаясь сквозь облако перенасыщенного пара, ионизирует его. Процесс конденсации пара происходит быстрее в местах образования ионов. Как следствие, там, где пролетела заряженная частица, образуется след из капелек воды, который можно сфотографировать. Именно из-за такого вида треков камера получила свое английское название — облачная камера (англ. cloud chamber).
Камеры Вильсона обычно помещают в магнитное поле, в котором траектории заряженных частиц искривляются. Определение радиуса кривизны траектории позволяет определить удельный электрический заряд частицы, а, следовательно, идентифицировать её.
Камеру изобрел в 1912 году шотландский физик Чарльз Вильсон. За изобретение камеры Вильсон получил Нобелевскую премию по физике 1927 года. В 1948 за совершенствование камеры Вильсона и проведенные с ней исследования Нобелевскую премию получил Патрик Блэкетт. #физика #радиактивность #physics #science #ядерная_физика #видеоуроки #наука #опыты #эксперименты
💫 Тайна вещества. Научно-популярный фильм СССР 1956 г.
🔥 В СССР делали радиоизотопные термоэлектрические генераторы (РИТЭГи).
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Гидравлическая система — это комплекс механизмов и компонентов, предназначенных для передачи энергии и управления движением через использование гидравлической среды, чаще всего масла. Принцип работы гидравлических систем заключается в преобразовании механической энергии приводного двигателя в гидравлическую и передаче мощности к рабочим органам промышленного оборудования.
Основной частью любой гидравлической машины являются два соединенных между собой цилиндра разного диаметра, снабженных поршнями.
Цилиндры заполнение жидкостью, чаще всего маслом и представляют собой сообщающиеся сосуды.
Рассмотрим как работает гидравлическая машина.
Пусть на большой поршень площадью S₁ действует сила F₁.
Эта сила будет оказывать на поршень давления P₁.
Давления P₁ передается жидкости, находящийся под большим поршнем.
Согласно закону Паскаля, давления производима на жидкость или газ, передается по всем направлениям без изменения.
Следовательно, давления будет передаваться жидкости, находящиеся под меньшим поршнем, площадью S₂ и на него, со стороны жидкости, будет действовать давления P₂, равная давлению P₁.
Чтобы жидкость и поршни находились в равновесии, на меньший поршень положим груз.
Поскольку для площадей поршней выполняется соотношения S₂ больше S₁, то сила F₂, действующая на меньший поршень, меньше силы F₁ действующей на больший поршень.
При чем, во сколько раз площадь меньшего поршня меньше площади большого, во столько же раз сила F₂ меньше силы F₁.
Таким образом, гидравлическая машина дает выигрыш в силе во столько раз, во сколько раз площадь большого поршня больше площади малого.
Это значит, что с помощью небольшой силы, приложенной к малому поршню гидравлической машины, можно уравновесить существенно большую силу, приложенную к большому поршню. #physics #опыты #физика #gif #анимация #видеоуроки #гидравлика #гидродинамика
💧 Принцип работы гидравлического пресса
💨⚾️ Эффект зависания шарика в потоке воздуха
💧 Гидравлика (12 частей)
❌ Незнание физики не освобождает от выполнения её законов
💨 Шарик в потоке жидкости 🟡
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
〰️ Физика в опытах: Искривление луча в неоднородной среде 🔴
Искривление луча в неоднородной среде связано с изменением показателя преломления среды. Например, если среда состоит из плоскопараллельных слоёв с показателем преломления, меняющимся скачкообразно от слоя к слою, то световой луч, преломляясь на границе слоёв, примет форму ломаной линии. Если неограниченно увеличивать число слоёв, устремляя к нулю их толщины и скачки показателей преломления, то в пределе показатель преломления среды станет меняться непрерывно, а луч перейдёт в кривую с непрерывно изменяющейся касательной. Искривление луча в неоднородной среде происходит в сторону увеличения показателя преломления.
💧 Полезно понаблюдать на опыте, как распространяется узкий световой пучок в оптически неоднородной среде. Рассмотрим жидкую среду. Чтобы поставить опыт, надо, во-первых, приготовить такую среду, а во-вторых, позаботиться о том, чтобы световой пучок был хорошо виден в ней. Наполним аквариум прямоугольной формы или специально изготовленную плоскопараллельную кювету водой примерно до половины. Затем через воронку со шлангом, конец которого надо опустить до самого дна кюветы, будем медленно наливать насыщенный раствор поваренной соли (300 г соли на литр воды). Раствор соли будет растекаться по дну кюветы и будет постепенно вытеснять вверх воду. В итоге нижняя половина кюветы окажется заполненной более плотной жидкостью (раствором соли), а верхняя - менее плотной (водой). Вследствие взаимной диффузии между жидкостями через некоторое время образуется переходный слой с плавно изменяющейся в вертикальном направлении плотностью, а значит, и показателем преломления. Он будет постепенно возрастать в направлении сверху вниз. Чтобы световой луч был хорошо виден в жидкости, можно предварительно добавить в чистую воду и в солевой раствор щепотку хвойного концентрата, продающегося в аптеке, слабый раствор которого обладает способностью светиться зеленым светом (люминесцировать) под действием обычного (белого) света.
В оптически неоднородной среде световой луч изгибается так, что его траектория всегда оказывается обращена выпуклостью в сторону уменьшения показателя преломления среды. Насколько резко будет искривляться световой луч в среде с непрерывно изменяющимся показателем преломления? Это зависит от того, насколько быстро изменяется показатель преломления при переходе от одних точек среды к другим.
Гервидс Валериан Иванович — доцент кафедры общей физики МИФИ, кандидат физико-математических наук
#физика #мкт #оптика #космос #optics #thermodynamics #термодинамика #physics #science
💡 Physics.Math.Code // @physics_lib
Искривление луча в неоднородной среде связано с изменением показателя преломления среды. Например, если среда состоит из плоскопараллельных слоёв с показателем преломления, меняющимся скачкообразно от слоя к слою, то световой луч, преломляясь на границе слоёв, примет форму ломаной линии. Если неограниченно увеличивать число слоёв, устремляя к нулю их толщины и скачки показателей преломления, то в пределе показатель преломления среды станет меняться непрерывно, а луч перейдёт в кривую с непрерывно изменяющейся касательной. Искривление луча в неоднородной среде происходит в сторону увеличения показателя преломления.
💧 Полезно понаблюдать на опыте, как распространяется узкий световой пучок в оптически неоднородной среде. Рассмотрим жидкую среду. Чтобы поставить опыт, надо, во-первых, приготовить такую среду, а во-вторых, позаботиться о том, чтобы световой пучок был хорошо виден в ней. Наполним аквариум прямоугольной формы или специально изготовленную плоскопараллельную кювету водой примерно до половины. Затем через воронку со шлангом, конец которого надо опустить до самого дна кюветы, будем медленно наливать насыщенный раствор поваренной соли (300 г соли на литр воды). Раствор соли будет растекаться по дну кюветы и будет постепенно вытеснять вверх воду. В итоге нижняя половина кюветы окажется заполненной более плотной жидкостью (раствором соли), а верхняя - менее плотной (водой). Вследствие взаимной диффузии между жидкостями через некоторое время образуется переходный слой с плавно изменяющейся в вертикальном направлении плотностью, а значит, и показателем преломления. Он будет постепенно возрастать в направлении сверху вниз. Чтобы световой луч был хорошо виден в жидкости, можно предварительно добавить в чистую воду и в солевой раствор щепотку хвойного концентрата, продающегося в аптеке, слабый раствор которого обладает способностью светиться зеленым светом (люминесцировать) под действием обычного (белого) света.
В оптически неоднородной среде световой луч изгибается так, что его траектория всегда оказывается обращена выпуклостью в сторону уменьшения показателя преломления среды. Насколько резко будет искривляться световой луч в среде с непрерывно изменяющимся показателем преломления? Это зависит от того, насколько быстро изменяется показатель преломления при переходе от одних точек среды к другим.
Гервидс Валериан Иванович — доцент кафедры общей физики МИФИ, кандидат физико-математических наук
#физика #мкт #оптика #космос #optics #thermodynamics #термодинамика #physics #science
💡 Physics.Math.Code // @physics_lib
Please open Telegram to view this post
VIEW IN TELEGRAM
📝 95 лет назад (6 июня) ), самый известный физик, математик и философ всех времен Альберт Эйнштейн посетил Ноттингемский университет.
Визит Эйнштейна был организован тогдашним главой физики профессором Генри Броузом. Профессор Броуз был авторитетом в области теории относительности и перевел на английский язык многие книги и научные труды Эйнштейна.
Эйнштейн и Брозе встретились в лагере для интернированных во время Первой мировой войны, и именно тогда Брозе заинтересовался теорией относительности. Он пригласил его прочесть лекцию в Ноттингеме в 1928 году.
Верный своему слову, 6 июня 1930 года Эйнштейн договорился о проведении лекции в Ноттингемском университетском колледже (как он тогда назывался). Он должен был прибыть в 4 часа дня, готовый начать свою лекцию в 7 часов вечера, и собралась большая толпа, ожидавшая его прибытия, но он не появлялся в течение полутора часов!
Причина, по которой Эйнштейн так опоздал, заключалась в том, что по пути из Кембриджа он остановился в Грэнтеме, чтобы посетить дом и место рождения Исаака Ньютона в Вулсторпе. Эйнштейн прибыл только в 6.30 вечера, всего за полчаса до лекции, так что он действительно отлично справился.
Лекционный зал был заполнен до отказа, когда Эйнштейн вошел в комнату, чтобы изложить свои теории относительности, которые стали основой современной науки.
Фрагмент доски, на которой он демонстрировал свои расчеты, сохранился в архивах университета. #физика #квантовая_физика #ОТО #СТО #релятивизм #наука #physics #science
💡 Physics.Math.Code // @physics_lib
Визит Эйнштейна был организован тогдашним главой физики профессором Генри Броузом. Профессор Броуз был авторитетом в области теории относительности и перевел на английский язык многие книги и научные труды Эйнштейна.
Эйнштейн и Брозе встретились в лагере для интернированных во время Первой мировой войны, и именно тогда Брозе заинтересовался теорией относительности. Он пригласил его прочесть лекцию в Ноттингеме в 1928 году.
Верный своему слову, 6 июня 1930 года Эйнштейн договорился о проведении лекции в Ноттингемском университетском колледже (как он тогда назывался). Он должен был прибыть в 4 часа дня, готовый начать свою лекцию в 7 часов вечера, и собралась большая толпа, ожидавшая его прибытия, но он не появлялся в течение полутора часов!
Причина, по которой Эйнштейн так опоздал, заключалась в том, что по пути из Кембриджа он остановился в Грэнтеме, чтобы посетить дом и место рождения Исаака Ньютона в Вулсторпе. Эйнштейн прибыл только в 6.30 вечера, всего за полчаса до лекции, так что он действительно отлично справился.
Лекционный зал был заполнен до отказа, когда Эйнштейн вошел в комнату, чтобы изложить свои теории относительности, которые стали основой современной науки.
Фрагмент доски, на которой он демонстрировал свои расчеты, сохранился в архивах университета. #физика #квантовая_физика #ОТО #СТО #релятивизм #наука #physics #science
💡 Physics.Math.Code // @physics_lib
📷 Pinhole effect — это оптический принцип, при котором свет, проходящий через небольшое отверстие, фокусируется в более узкий луч, что уменьшает рассеивание и создаёт чёткое изображение. Некоторые области применения эффекта пинхол:
▪️Дизайн очков. Эффект пинхол используется в очках с несколькими небольшими отверстиями на непрозрачных линзах. Такие очки помогают снизить нагрузку на глаза и стимулируют работу глазных мышц.
▪️Съёмка. Эффект пинхол применяется в пинхол-камерах, где для получения изображения используется маленькое отверстие перед датчиком. Чем меньше диаметр отверстия, тем чётче будет картинка.
▪️Защита от яркого света. Эффект пинхол использовался в защитных очках, например, для защиты от снежной слепоты.
▪️Также пинхол-съёмку применяют для захвата движения солнца за длительный период времени, этот тип фотографии называется солариграфией.
Стено́п (от фр. Sténopé) — фотографический аппарат без объектива, роль которого выполняет малое отверстие. В современной фотографии также распространено название «пинхол» (англ. pinhole от pin «булавка» + hole «отверстие»).
Наибольшая резкость изображения получается, когда соблюдено определенное отношение между диаметром отверстия и его положением относительно светочувствительного элемента. Преимуществом стенопа служит полная ортоскопичность изображения, даваемая им, и неограниченная глубина резкости. Из-за незначительной яркости изображения в фокальной плоскости при съемке требуется продолжительная выдержка. #факты #оптика #техника #физика #волны #дифракция #physics #science
💡 Physics.Math.Code // @physics_lib
▪️Дизайн очков. Эффект пинхол используется в очках с несколькими небольшими отверстиями на непрозрачных линзах. Такие очки помогают снизить нагрузку на глаза и стимулируют работу глазных мышц.
▪️Съёмка. Эффект пинхол применяется в пинхол-камерах, где для получения изображения используется маленькое отверстие перед датчиком. Чем меньше диаметр отверстия, тем чётче будет картинка.
▪️Защита от яркого света. Эффект пинхол использовался в защитных очках, например, для защиты от снежной слепоты.
▪️Также пинхол-съёмку применяют для захвата движения солнца за длительный период времени, этот тип фотографии называется солариграфией.
Стено́п (от фр. Sténopé) — фотографический аппарат без объектива, роль которого выполняет малое отверстие. В современной фотографии также распространено название «пинхол» (англ. pinhole от pin «булавка» + hole «отверстие»).
Наибольшая резкость изображения получается, когда соблюдено определенное отношение между диаметром отверстия и его положением относительно светочувствительного элемента. Преимуществом стенопа служит полная ортоскопичность изображения, даваемая им, и неограниченная глубина резкости. Из-за незначительной яркости изображения в фокальной плоскости при съемке требуется продолжительная выдержка. #факты #оптика #техника #физика #волны #дифракция #physics #science
💡 Physics.Math.Code // @physics_lib