Data Science by ODS.ai 🦜
46.3K subscribers
631 photos
74 videos
7 files
1.73K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @malev
加入频道
​​Using ‘radioactive data’ to detect if a data set was used for training

The authors have developed a new technique to mark the images in a data set so that researchers can determine whether a particular machine learning model has been trained using those images. This can help researchers and engineers to keep track of which data set was used to train a model so they can better understand how various data sets affect the performance of different neural networks.

The key points:
- the marks are harmless and have no impact on the classification accuracy of models, but are detectable with high confidence in a neural network;
- the image features are moved in a particular direction (the carrier) that has been sampled randomly and independently of the data
- after a model is trained on such data, its classifier will align with the direction of the carrier
- the method works in such a way that it is difficult to detect whether a data set is radioactive and to remove the marks from the trained model.

blogpost: https://ai.facebook.com/blog/using-radioactive-data-to-detect-if-a-data-set-was-used-for-training/
paper: https://arxiv.org/abs/2002.00937

#cv #cnn #datavalidation #image #data