Data Science by ODS.ai 🦜
46.2K subscribers
634 photos
74 videos
7 files
1.73K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @malev
加ε…₯钑道
Forwarded from Machinelearning
🌟 cuPyNumeric: Π·Π°ΠΌΠ΅Π½Π° NumPy ΠΎΡ‚ NVIDIA.

По ΠΌΠ΅Ρ€Π΅ роста объСмов Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ слоТности вычислСний, вычислСния Π½Π° Python ΠΈ NumPy, основанныС Π½Π° CPU, Π½ΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ Π² ускорСнии для выполнСния соврСмСнных исслСдований.

cuPyNumeric Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π°, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΡ‚Π°Ρ‚ΡŒ Π·Π°ΠΌΠ΅Π½ΠΎΠΉ Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠΈ NumPy, прСдоставляя сообщСству Python распрСдСлСнныС ΠΈ ускорСнныС вычислСния Π½Π° ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌΠ΅ NVIDIA. cuPyNumeric позволяСт ΠΌΠ°ΡΡˆΡ‚Π°Π±ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ вычислСния Π±Π΅Π· измСнСния ΠΊΠΎΠ΄Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ‚ΠΎΠ² с ΠΎΠ΄Π½ΠΎΠ³ΠΎ CPU Π΄ΠΎ ΡΡƒΠΏΠ΅Ρ€ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€ΠΎΠ² с нСсколькими GPU ΠΈ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π½ΠΎΠ΄Π°ΠΌΠΈ.

Π‘ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠ° построСна Π½Π° Legate, ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅Ρ‚ Ρ€ΠΎΠ΄Π½ΠΎΠΉ Python ΠΈ интСрфСйс NumPy. cuPyNumeric доступСн ΠΈΠ· conda (вСрсия Π½Π΅ Π½ΠΈΠΆΠ΅ 24.1) Π² legate channel. На систСмах с GPU ΠΏΠ°ΠΊΠ΅Ρ‚Ρ‹, ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ графичСскиС ускоритСли Π±ΡƒΠ΄ΡƒΡ‚ Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ автоматичСски Π²ΠΎ врСмя установки.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ эффСктивности cuPyNumeric - ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° 10 Π’Π‘ ΠΌΠΈΠΊΡ€ΠΎΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ многоракурсной микроскопии Π² Π²ΠΈΠ΄Π΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ массива NumPy Π·Π° ΠΎΠ΄ΠΈΠ½ дСнь с Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΉ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

▢️Установка ΠΈ тСст Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΈΠ· рСпозитория:

# Create new conda env
conda create -n myenv -c conda-forge -c legate cupynumeric

# Test via example from repo
$ legate examples/black_scholes.py
Running black scholes on 10K options...
Elapsed Time: 129.017 ms


πŸ“ŒΠ›ΠΈΡ†Π΅Π½Π·ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅: Apache 2.0 License.


πŸŸ‘Π‘Ρ‚Π°Ρ‚ΡŒΡ
πŸŸ‘Π”ΠΎΠΊΡƒΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΡ
πŸ–₯GitHub


@ai_machinelearning_big_data

#AI #ML #NumPy #NVIDIA #cuPyNumeric
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
πŸ‘15πŸ”₯6❀3
The Evolution and Dependencies of Scientific Python Libraries

Numerical computing libraries like NumPy and SciPy rely on foundational mathematical code spanning decades. Until recently, NumPy depended on Fortran-based BLAS/LAPACK implementations for linear algebra operations. Modern versions now use OpenBLAS, which replaces Fortran code with optimized C implementations. SciPy, however, still incorporates Fortran 77 code for certain functionalities, such as ARPACK (used in eigenvalue computations) and FFTPACK (for Fourier transforms). These dependencies stem from legacy libraries like BLAS (1970s), LAPACK (1980s), and MINPACK (optimization), which remain widely used due to their mathematically stable, battle-tested algorithms like Simulated Annealing.

Simulated Annealing: A 1953 Algorithm in Modern ML

Imagine searching for the largest mushroom in a forest. Gradient methods risk settling for a local maximum, but Simulated Annealing (SciPy’s optimize) balances exploration and exploitation: early random β€œhigh-energy” steps avoid local traps, then gradually refines toward the global optimum.

Originally devised to model atomic behavior in molten metals (Metropolis Algorithm, 1953), it mimics annealingβ€”slow cooling ensures uniform atomic arrangement. Scientists introduced probabilistic acceptance of suboptimal states to escape flawed structures. Thise method was adopted to optimize ML models, logistics, and pattern recognition, making the familiar Python code use bindings which are ~15 years older than Python itself.

Source: Facebook post (Ru)

#SciPy #Fortran #NumPy #Math
πŸ‘12❀4πŸ€·β€β™‚1