Data Science by ODS.ai 🦜
46K subscribers
676 photos
77 videos
7 files
1.75K links
First Telegram Data Science channel. Covering all technical and popular staff about anything related to Data Science: AI, Big Data, Machine Learning, Statistics, general Math and the applications of former. To reach editors contact: @malev
加入频道
Forwarded from Machinelearning
🔥 Бесплатный курс от Microsoft «ИИ-агенты для начинающих»

Курс содержит пошаговые инструкции с примерами кода, которые помогут научиться создавать автономных агентов с использованием машинного обучения.

Фокус на AI-агентах:
Если вас интересует именно разработка агентов — например, для симуляций, игр или интерактивных систем — данный курс будет полезен.

Каждый урок включает в себя:
- Лекцию, (видео уроки появятся в марте 2025 года)
- Примеры кода на Python с поддержкой Azure AI Foundry и Github Models
- Практические задания
- Ссылки на полезные дополнительные ресурсы

Если это ваш первый опыт работы с агентами, у Microsoft есть еще 1 курс «Генеративный ИИ для начинающих», который содержит 21 урок по построению моделей с помощью GenAI, лучше начать с него.

Переведен на 9 различных языков (русского нет).

Github

@ai_machinelearning_big_data

#course #Microsoft #aiagents #ai #ml #opensource #freecourse
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥9👍61
Forwarded from Machinelearning
🌟 Microsoft GUI-Actor: взаимодействие ИИ с GUI без использования координат.

GUI-Actor — методика на базе VLM, которая вместо традиционной генерации координат текстом при визуальной обработке интерфейса использует внимание внутри модели.

Чтобы уйти от координатного подхода, в GUI-Actor используется специальный токен <ACTOR>, который "учится" связываться с визуальными патчами, соответствующими целевой области экрана. За один проход модель может запомнить сразу несколько кандидатов на действие.

Например, все кнопки "Сохранить" в сложном интерфейсе. Это очень похоже на человеческое восприятие: видеть сам элемент, а не его позиции по осям Х и Y.


Выбрать наиболее подходящий вариант из элементов-кандидатов помогает "верификатор". Это отдельная модель, оценивающая кандидатов от <ACTOR> и отбирающая самый подходящий для действия. Она не только улучшает точность, но и универсальна: ее можно подключить к другим моделям.

Обучение требует минимум ресурсов. Можно заморозить основную VLM (Qwen2-VL-7B) и дообучить только новый action head и токены. Это всего ~100М параметров для 7B-модели.

Комбинация из такого быстрого обучения + верификатор почти догоняет полноценно обученные аналоги, сохраняя общие способности базовой модели. Никакого "катастрофического забывания" - агент учится кликать интерфейсы, не разучиваясь описывать картинки.

Результаты тестов на сложном бенчмарке ScreenSpot-Pro с высоким разрешением и незнакомыми интерфейсами (CAD, научный софт) GUI-Actor-7B с Qwen2-VL показал 40.7 балла, а с Qwen2.5-VL — 44.6, обойдя даже UI-TARS-72B (38.1).

На других тестах (ScreenSpot, ScreenSpot-v2) он тоже лидирует, особенно в иконках и текстовых элементах, демонстрируя крутую адаптацию к разным разрешениям и версткам.

▶️В открытый доступ опубликованы веса моделей:

🟢GUI-Actor-7B-Qwen2-VL;
🟢GUI-Actor-2B-Qwen2-VL;
🟠GUI-Actor-Verifier-2B.

В планах - выпуск еще двух моделей на основе Qwen2.5-VL (3B и 7B), демо GUI-Actor, код для модели-верификатора и датасеты для обучения.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Набор моделей
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #VLM #GUIActor #Microsoft
Please open Telegram to view this post
VIEW IN TELEGRAM
7👍4🔥2