DensePose: Dense Human Pose Estimation In The Wild
Facebook AI Research group presented a paper on pose estimation. That will help Facebook with better understanding of the processed videos.
NEW: DensePose-COCO, a large-scale ground-truth dataset with image-to-surface correspondences manually annotated on 50K COCO images.
Project website: http://densepose.org/
Arxiv: https://arxiv.org/abs/1802.00434
#facebook #fair #cvpr #cv #CNN #dataset
Facebook AI Research group presented a paper on pose estimation. That will help Facebook with better understanding of the processed videos.
NEW: DensePose-COCO, a large-scale ground-truth dataset with image-to-surface correspondences manually annotated on 50K COCO images.
Project website: http://densepose.org/
Arxiv: https://arxiv.org/abs/1802.00434
#facebook #fair #cvpr #cv #CNN #dataset
arXiv.org
DensePose: Dense Human Pose Estimation In The Wild
In this work, we establish dense correspondences between RGB image and a surface-based representation of the human body, a task we refer to as dense human pose estimation. We first gather dense...
Face recognition is now available as a JS-package with the help of face-api.js. It is built on top of #Tensorflow (js version).
https://itnext.io/face-api-js-javascript-api-for-face-recognition-in-the-browser-with-tensorflow-js-bcc2a6c4cf07?gi=a277ad002e2a
#cv #js #tf #dl #cnn
https://itnext.io/face-api-js-javascript-api-for-face-recognition-in-the-browser-with-tensorflow-js-bcc2a6c4cf07?gi=a277ad002e2a
#cv #js #tf #dl #cnn
Medium
face-api.js β JavaScript API for Face Recognition in the Browser with tensorflow.js
A JavaScript API for Face Detection, Face Recognition and Face Landmark Detection
Faster R-CNN and Mask R-CNN in #PyTorch 1.0
Another release from #Facebook.
Mask R-CNN Benchmark: a fast and modular implementation for Faster R-CNN and Mask R-CNN written entirely in @PyTorch 1.0. It brings up to 30% speedup compared to mmdetection during training.
Webcam demo and ipynb file are available.
Github: https://github.com/facebookresearch/maskrcnn-benchmark
#CNN #CV #segmentation #detection
Another release from #Facebook.
Mask R-CNN Benchmark: a fast and modular implementation for Faster R-CNN and Mask R-CNN written entirely in @PyTorch 1.0. It brings up to 30% speedup compared to mmdetection during training.
Webcam demo and ipynb file are available.
Github: https://github.com/facebookresearch/maskrcnn-benchmark
#CNN #CV #segmentation #detection
GitHub
GitHub - facebookresearch/maskrcnn-benchmark: Fast, modular reference implementation of Instance Segmentation and Object Detectionβ¦
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch. - facebookresearch/maskrcnn-benchmark
How Many Samples are Needed to Learn a Convolutional Neural Network
Article questioning fact that CNNs use a more compact representation than the Fully-connected Neural Network (FNN) and thus require fewer training samples to accurately estimate their parameters.
ArXiV: https://arxiv.org/abs/1805.07883
#CNN #nn
Article questioning fact that CNNs use a more compact representation than the Fully-connected Neural Network (FNN) and thus require fewer training samples to accurately estimate their parameters.
ArXiV: https://arxiv.org/abs/1805.07883
#CNN #nn
Deep learning cheatsheets, covering content of Stanfordβs CS 230 class.
CNN: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
RNN: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
TipsAndTricks: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
#cheatsheet #Stanford #dl #cnn #rnn #tipsntricks
CNN: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks
RNN: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
TipsAndTricks: https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-deep-learning-tips-and-tricks
#cheatsheet #Stanford #dl #cnn #rnn #tipsntricks
stanford.edu
CS 230 - Convolutional Neural Networks Cheatsheet
Teaching page of Shervine Amidi, Graduate Student at Stanford University.
Understanding Convolutional Neural Networks through Visualizations in PyTorch
Explanation of how #CNN works
Link: https://towardsdatascience.com/understanding-convolutional-neural-networks-through-visualizations-in-pytorch-b5444de08b91
#PyTorch #nn #DL
Explanation of how #CNN works
Link: https://towardsdatascience.com/understanding-convolutional-neural-networks-through-visualizations-in-pytorch-b5444de08b91
#PyTorch #nn #DL
Towards Data Science
Understanding Convolutional Neural Networks through Visualizations in PyTorch
Getting down to the nitty-gritty of CNNs
"Approximating CNNs with Bag-of-local-Features models works surprisingly well on ImageNet"
A "bag of words" of nets on tiny 17x17 patches suffice to reach AlexNet-level performance on ImageNet. A lot of the information is very local.
Paper: https://openreview.net/forum?id=SkfMWhAqYQ
#fun #CNN #CV #ImageNet
A "bag of words" of nets on tiny 17x17 patches suffice to reach AlexNet-level performance on ImageNet. A lot of the information is very local.
Paper: https://openreview.net/forum?id=SkfMWhAqYQ
#fun #CNN #CV #ImageNet
OpenReview
Approximating CNNs with Bag-of-local-Features models works...
Aggregating class evidence from many small image patches suffices to solve ImageNet, yields more interpretable models and can explain aspects of the decision-making of popular DNNs.
DGC-Net: Dense Geometric Correspondence network
Paper addresses the challenge of dense pixel correspondence estimation between two images. Practically, this means that it is about comparing different views of one object, which is very important to make #CV more robust.
ArXiV: https://arxiv.org/abs/1810.08393
Github: https://github.com/AaltoVision/DGC-Net
YouTube: https://www.youtube.com/watch?v=xnQMEr4FbHE
Project page: https://aaltovision.github.io/dgc-net-site/
#CNN #DL
Paper addresses the challenge of dense pixel correspondence estimation between two images. Practically, this means that it is about comparing different views of one object, which is very important to make #CV more robust.
ArXiV: https://arxiv.org/abs/1810.08393
Github: https://github.com/AaltoVision/DGC-Net
YouTube: https://www.youtube.com/watch?v=xnQMEr4FbHE
Project page: https://aaltovision.github.io/dgc-net-site/
#CNN #DL
arXiv.org
DGC-Net: Dense Geometric Correspondence Network
This paper addresses the challenge of dense pixel correspondence estimation
between two images. This problem is closely related to optical flow estimation
task where ConvNets (CNNs) have recently...
between two images. This problem is closely related to optical flow estimation
task where ConvNets (CNNs) have recently...
How to hide from the AI surveillance state with a color printout
MITβs team studied how to fool camera with and #adversarial print, exploiting the fact that #CNN can be tricked by adversarial examples into recognizing something wrong or not recongnizing image at all.
Link: https://www.technologyreview.com/f/613409/how-to-hide-from-the-ai-surveillance-state-with-a-color-printout/
#CV #DL #MIT
MITβs team studied how to fool camera with and #adversarial print, exploiting the fact that #CNN can be tricked by adversarial examples into recognizing something wrong or not recongnizing image at all.
Link: https://www.technologyreview.com/f/613409/how-to-hide-from-the-ai-surveillance-state-with-a-color-printout/
#CV #DL #MIT
MIT Technology Review
How to hide from the AI surveillance state with a color printout
AI-powered video technology is becoming ubiquitous, tracking our faces and bodies through stores, offices, and public spaces. In some countries the technology constitutes a powerful new layer of policing and government surveillance. Fortunately, as some researchersβ¦