Forwarded from Arisa Deep Learning
💎آموزش 28 قسمتی تنسور فلو با زیر نویس انگلیسی
https://bit.ly/2RFxJOr
#TensorFlow #DeepLearning
————————————————-
@deeplearningarisa
www.arisahpc.com
https://bit.ly/2RFxJOr
#TensorFlow #DeepLearning
————————————————-
@deeplearningarisa
www.arisahpc.com
Forwarded from Tensorflow(@CVision) (Alireza Akhavan)
#سورس_کد
یه پیاده سازی جمع و جور، مختصر و تمیز از Deep Dream در تنسرفلوی 2.0 که میتوانید در گوگل کولب اجرا کنید.
Minimal implementation of Deep Dream in TensorFlow 2.0
https://colab.research.google.com/github/random-forests/applied-dl/blob/master/examples/9-deep-dream-minimal.ipynb
#art #aiart #deeplearning #tensorflow #technology
🙏Thanks to: @AI_Python_EN
#tensorflow2 #DeepDream
یه پیاده سازی جمع و جور، مختصر و تمیز از Deep Dream در تنسرفلوی 2.0 که میتوانید در گوگل کولب اجرا کنید.
Minimal implementation of Deep Dream in TensorFlow 2.0
https://colab.research.google.com/github/random-forests/applied-dl/blob/master/examples/9-deep-dream-minimal.ipynb
#art #aiart #deeplearning #tensorflow #technology
🙏Thanks to: @AI_Python_EN
#tensorflow2 #DeepDream
TensorFlow Probability: Learning with confidence
TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU). It's for data scientists, statisticians, and ML researchers/practitioners who want to encode domain knowledge to understand data and make predictions with uncertainty estimates. In this talk we focus on the "layers" module and demonstrate how TFP "distributions" fit naturally with Keras to enable estimating aleatoric and/or epistemic uncertainty.
Website: https://www.tensorflow.org/probability
Introduction Video: https://www.youtube.com/watch?v=BrwKURU-wpk
#tensorflow #machine_learning
TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU). It's for data scientists, statisticians, and ML researchers/practitioners who want to encode domain knowledge to understand data and make predictions with uncertainty estimates. In this talk we focus on the "layers" module and demonstrate how TFP "distributions" fit naturally with Keras to enable estimating aleatoric and/or epistemic uncertainty.
Website: https://www.tensorflow.org/probability
Introduction Video: https://www.youtube.com/watch?v=BrwKURU-wpk
#tensorflow #machine_learning
TensorFlow
TensorFlow Probability
A library to combine probabilistic models and deep learning on modern hardware (TPU, GPU) for data scientists, statisticians, ML researchers, and practitioners.