Unsupervised learning models of primary cortical receptive fields and receptive field plasticity
Abstract: The efficient coding hypothesis holds that neural receptive fields are adapted to the statistics of the environment, but is agnostic to the timescale of this adaptation, which occurs on both evolutionary and developmental timescales. In this work we focus on that component of adaptation which occurs during an organism's lifetime, and show that a number of unsupervised feature learning algorithms can account for features of normal receptive field properties across multiple primary sensory cortices. Furthermore, we show that the same algorithms account for altered receptive field properties in response to experimentally altered environmental statistics. Based on these modeling results we propose these models as phenomenological models of receptive field plasticity during an organism's lifetime. Finally, due to the success of the same models in multiple sensory areas, we suggest that these algorithms may provide a constructive realization of the theory, first proposed by Mountcastle (1978), that a qualitatively similar learning algorithm acts throughout primary sensory cortices.
https://papers.nips.cc/paper/4331-unsupervised-learning-models-of-primary-cortical-receptive-fields-and-receptive-field-plasticity
#neural_network #neuroscience
Abstract: The efficient coding hypothesis holds that neural receptive fields are adapted to the statistics of the environment, but is agnostic to the timescale of this adaptation, which occurs on both evolutionary and developmental timescales. In this work we focus on that component of adaptation which occurs during an organism's lifetime, and show that a number of unsupervised feature learning algorithms can account for features of normal receptive field properties across multiple primary sensory cortices. Furthermore, we show that the same algorithms account for altered receptive field properties in response to experimentally altered environmental statistics. Based on these modeling results we propose these models as phenomenological models of receptive field plasticity during an organism's lifetime. Finally, due to the success of the same models in multiple sensory areas, we suggest that these algorithms may provide a constructive realization of the theory, first proposed by Mountcastle (1978), that a qualitatively similar learning algorithm acts throughout primary sensory cortices.
https://papers.nips.cc/paper/4331-unsupervised-learning-models-of-primary-cortical-receptive-fields-and-receptive-field-plasticity
#neural_network #neuroscience
papers.nips.cc
Unsupervised learning models of primary cortical receptive fields and receptive field plasticity
Electronic Proceedings of Neural Information Processing Systems
SIREN: Implicit Neural Representations with Periodic Activation Functions
Abstract: Implicitly defined, continuous, differentiable signal representations parameterized by neural networks have emerged as a powerful paradigm, offering many possible benefits over conventional representations. However, current network architectures for such implicit neural representations are incapable of modeling signals with fine detail, and fail to represent a signal's spatial and temporal derivatives, despite the fact that these are essential to many physical signals defined implicitly as the solution to partial differential equations. We propose to leverage periodic activation functions for implicit neural representations and demonstrate that these networks, dubbed sinusoidal representation networks or Sirens, are ideally suited for representing complex natural signals and their derivatives. We analyze Siren activation statistics to propose a principled initialization scheme and demonstrate the representation of images, wavefields, video, sound, and their derivatives. Further, we show how Sirens can be leveraged to solve challenging boundary value problems, such as particular Eikonal equations (yielding signed distance functions), the Poisson equation, and the Helmholtz and wave equations. Lastly, we combine Sirens with hypernetworks to learn priors over the space of Siren functions.
Paper: https://arxiv.org/abs/2006.09661
Website: https://vsitzmann.github.io/siren/
Explanatory Video: https://youtu.be/Q5g3p9Zwjrk
#deep_learning #neural_network
Abstract: Implicitly defined, continuous, differentiable signal representations parameterized by neural networks have emerged as a powerful paradigm, offering many possible benefits over conventional representations. However, current network architectures for such implicit neural representations are incapable of modeling signals with fine detail, and fail to represent a signal's spatial and temporal derivatives, despite the fact that these are essential to many physical signals defined implicitly as the solution to partial differential equations. We propose to leverage periodic activation functions for implicit neural representations and demonstrate that these networks, dubbed sinusoidal representation networks or Sirens, are ideally suited for representing complex natural signals and their derivatives. We analyze Siren activation statistics to propose a principled initialization scheme and demonstrate the representation of images, wavefields, video, sound, and their derivatives. Further, we show how Sirens can be leveraged to solve challenging boundary value problems, such as particular Eikonal equations (yielding signed distance functions), the Poisson equation, and the Helmholtz and wave equations. Lastly, we combine Sirens with hypernetworks to learn priors over the space of Siren functions.
Paper: https://arxiv.org/abs/2006.09661
Website: https://vsitzmann.github.io/siren/
Explanatory Video: https://youtu.be/Q5g3p9Zwjrk
#deep_learning #neural_network