NOP::Nuances of Programming
62.5K subscribers
3.66K photos
11 videos
12 files
5.01K links
Любые вопросы по сотрудничеству: @ramilkr
Если нужен токен:
https://telega.in/c/nuancesprog
NOP::Humor - https://yangx.top/nophumor
NOP::Recruiter Удаленка- https://yangx.top/nopremote

РКН: 4977653520
加入频道
Что общего у фейковых новостей? Как создать чат-бота, который отличает такие новости от реальных? Почему BERT не является универсальным решением в машинном обучении? Узнайте ответы на эти и сопутствующие вопросы прямо сейчас.

https://nsprg.ru/OobY2v

VK: https://nsprg.ru/vd0W8v

Дзен: https://nsprg.ru/ObZkEO

@nuancesprog #MachineLearning
Отправной точкой в машинном обучении является установление стандартов с помощью базовых моделей. Ознакомьтесь со основным механизмом, стратегиями и ключевыми параметрами этого процесса, чтобы оценить эффективность простейшего инструмента МО - базового классификатора.

https://nsprg.ru/mwZ7JO

VK: https://nsprg.ru/vLdp1v

@nuancesprog #MachineLearning #DataScience #ForBeginners
Машинное обучение - одна из тех областей, которые должен знать каждый, кто изучает науку о данных. Предлагаем описание 6 ключевых алгоритмов контролируемого МО, изложенное простым, доступным языком.

https://nsprg.ru/v2n6jv

VK: https://nsprg.ru/vX94wO

Дзен: https://nsprg.ru/OZEnav

@nuancesprog #MachineLearning
Регуляризация размерности данных - важнейший навык в машинном обучении, позволяющий повысить эффективность модели. Чтобы овладеть им, необходимо понять различие между лассо- и ридж-регрессиями. Попробуем разобраться с этими методами статистического обучения.

https://nsprg.ru/O5PDRv

VK: https://nsprg.ru/OobGEv

Дзен: https://nsprg.ru/v3GDbv

@nuancesprog #MachineLearning
Предлагаем пошаговое руководство по полной разработке LLM-приложений - от первоначальной идеи до экспериментов, оценки и создания продукта. Следуя ему, вы сможете максимально расширить границы возможного LLM-нативных технологий.

https://nsprg.ru/mW2lyO

VK: https://nsprg.ru/O5P7Bv

@nuancesprog #LLM #MachineLearning
Предлагаем наглядное руководство по смарт-обрезке ветвей дерева решений с учетом сложности/стоимости вычислений. Описанный подход потенциально позволяет создавать более оптимальные деревья, хотя зависит от набора данных, поставленной задачи и доступных вычислительных ресурсов.

https://nsprg.ru/xPGArm

VK: https://nsprg.ru/v8p4zv

@nuancesprog #MachineLearning #Python #Sklearn #Pandas #Numpy
Разберем пошагово процесс создания масштабируемой, эффективной системы рекомендаций с нуля. Подробно изучим нюансы ее компонентов: сбор и представление данных, выбор алгоритма, обучение модели, обработка в реальном времени, обратная связь.

https://nsprg.ru/xPGX6m

VK: https://nsprg.ru/v8pXrv

@nuancesprog #MachineLearning
Ознакомьтесь с новым подходом к поиску необходимых документов. Для повышения точности поиска он предполагает учет соседних документов с помощью контекстно-зависимых эмбеддингов.

https://nsprg.ru/x9w7aO

VK: https://nsprg.ru/mwZ10O

@nuancesprog #MachineLearning #RAG
Узнаем, как Яндекс создавал новое поколение языковых моделей YandexGPT 5, какие технические улучшения реализовали для Pro-версии, как добились результатов на уровне GPT-4o и превзошли Qwen 2.5. Разберем оптимизации, снизившие затраты на вычисления на 25%, и возможности выложенной опенсорс Lite-версии для разработки собственных решений.

ХАБР: https://nsprg.ru/O4lodO

@nuancesprog #MachineLearning #LLM
Последние достижения в области LLM открывают новые возможности для оптимизации процесса аннотирования, особенно для обнаружения ошибок в метках в существующих наборах данных. Ознакомьтесь с новым подходом, использующим ансамбль LLM для выявления потенциально ошибочно помеченных примеров.

https://nsprg.ru/OKb3ov

VK: https://nsprg.ru/mW2EqO

@nuancesprog #LLM #MachineLearning